Как посчитать общее сопротивление цепи

Общее сопротивление

Для теоретических расчетов и практического применения достаточно часто необходимо знать сопротивление электрической цепи. По этому параметру делают выводы о мощности нагрузки. С его помощью определяют параметры делителей напряжения и других устройств, отдельных частей радиотехнических схем. После ознакомления с тематическими методиками обозначенные и другие задачи можно решать быстро и правильно.

Определение

Если посчитать общее сопротивление (Rобщ), можно выяснить изменение основных электрических параметров (тока (I) и напряжения (U)) при подключении схемы к определенному источнику питания. В простейшем варианте достаточно применить закон Ома (I = U/ R) и пренебречь внутренним сопротивлением аккумулятора.

При напряжении U = 6,5 В через подключенный резистор R = 20 ОМ будет проходить ток I = 6,5/20 = 0,325 А. По вычисленному параметру с помощью классической формулы можно узнать мощность:

P = I2 *R = U2/ R = 0,105625 * 20 = 2,11 Вт.

Полученное значение пригодится для выбора подходящего пассивного элемента в ассортименте магазина.

На практике приходится решать задачи с большим количеством элементов. Общий показатель эквивалентен суммарному сопротивлению цепи. Однако простым сложением правильный результат получить нельзя. Ниже рассмотрены технологии, по которым выполняют корректные вычисления.

Рисунок поясняет используемую терминологию:

  • i1, i2… i6 – токи в отдельных цепях;
  • R1-R3 – пассивные элементы (резисторы);
  • e1, e2 – типичные обозначения источников тока (ЭДС);
  • L и C – компоненты с реактивными характеристиками (индуктивными и емкостными, соответственно);
  • ветвями называют с одним током;
  • места соединение этих цепей – узлы;
  • контуры (обозначены римскими цифрами I, II и III) показывают замкнутые пути прохождения токов по нескольким ветвям.

Способы совмещения элементов

При последовательной установке нескольких резисторов в одной ветви соответствующие номиналы складывают. Вместо нескольких компонентов допустимо взять для расчетов один элемент с равным полученному результату вычислений эквивалентным сопротивлением Rэкв. При небольшой длине цепи питания параметры проводника можно не учитывать.

Особенности расчетов

Для вычисления полной цепи учитывают по формуле внутреннее сопротивление (Rвн) источника:

I = E (ЭДС)/ (Rэкв + Rвн).

Имеющуюся схему преобразуют с целью упрощения по рассмотренным выше принципам с применением эквивалентных сопротивлений. Далее пользуются классическими соотношениями электрических величин, которые основаны на законе Ома.

Также применяют специфические технологии:

  • контурных токов;
  • узловых потенциалов;
  • эквивалентного генератора;
  • наложения.

К сведению. Кроме упрощения схем, применяют стандартные методики преобразования математических формул. В некоторых ситуациях удобнее оперировать с дробными величинами, поэтому следует обновить в собственной памяти соответствующие знания из школьной программы.

Постулаты Кирхгофа

Эти принципы используют для расчета сложных электрических схем. Базовые сведения о токах и напряжениях помогут уточнить контрольные параметры в отдельных узлах. С помощью этой информации корректируют характеристики отдельных функциональных компонентов. Они пригодятся для определения уровня выходного сигнала в определенных точках без применения измерительной аппаратуры.

Первый постулат

По классической формулировке сумма (алгебраическая) входящих и выходящих из одного узла токов определяется выражением:

i1 + i2 + … + in = 0.

Это соотношение справедливо для любой контрольной точки схемы, где соединяются ветви. Не имеет значения, какие именно компоненты включены в отдельные цепи:

  • реактивные;
  • пассивные;
  • источники питания в любой полярности.

К сведению. Подразумевается (для расчета), что входящие/ выходящие токи положительные/ отрицательные, соответственно.

Второй постулат

Это правило определяет равенство сумм напряжений и ЭДС, включенных в один контур. Для наглядности можно представить простейший пример с двумя резисторами, подключенными к источнику постоянного тока. С помощью мультиметра измеряют напряжения на выводах:

  • UR1 = 4 V;
  • UR1 = 2,5 V;
  • Uакб = 6,5 V = UR1 + UR2.

Второе правило действительно для всех замкнутых контуров, смешанных и сложных соединений. Для проверки вычислений можно суммировать последовательно разницу потенциалов контрольных точек. Если в цепи отсутствуют дополнительные генераторы (аккумуляторные батареи), получится результат, равный нулю. Выбирают направление обхода контура, соответствующее положительному току (входящему в узел). Выше показан частный случай, когда складывают результаты измерений.

К сведению. Второй постулат Кирхгофа применяют для расчета схем, подключенных к источнику питания переменного тока.

Реактивные составляющие нагрузок

Чтобы выяснить, как найти общее сопротивление цепи в реальных условиях, следует учитывать наличие и соответствующее влияние компонентов с активными и реактивными характеристиками. К первой группе относят:

  • резисторы (постоянные и переменные);
  • соединительные провода;
  • нагревательные элементы (ТЭНы).

Проводимость таких изделий зависит от исходного материала и количества примесей, поперечного сечения и длины, уровня температуры.

При увеличении силы тока в типовом проводнике из металла столкновение электронов с молекулярной кристаллической решеткой провоцирует преобразование электрической энергии в тепловую. Наглядный пример такого процесса – серийная лампа накаливания. До 90% и более мощности потребления подобные приборы используют впустую для нагрева окружающего пространства.

Температурное влияние на сопротивление применяют для создания датчиков. Изменение тока в соответствующей цепи фиксируют измерительным прибором. После преобразования в наглядный цифровой вид результаты отображают на дисплее.

Индуктивными реактивными характеристиками обладают катушки. Подключение такого изделия смещает фазы тока и напряжения. Электрическое сопротивление (ХL) в этом случае сильно зависит от частоты сигнала (f), индуктивности (L):

Читайте также:
Косметический ремонт квартиры Перечень работ и как сэкономить

Частный случай применения – ограничитель помех. Такие схемы выполняют свои функции за счет сильного сопротивления току при увеличении частоты (скорости нарастания переднего фронта импульса).

Для нагрузки с емкостными свойствами применяют следующую формулу:

Такими параметрами обладает конденсатор. Он также создает фазовый сдвиг, заряжается и разряжается в соответствии с изменениями входного сигнала.

Как вычислить общее сопротивление цепи

Для расчетов используют представленные выше правила, формулы, проверочные действия. Рекомендуется сначала изобразить схему в упрощенном виде, с комплексным объединением отдельных участков. Далее вычисляют эквивалентные сопротивления соответствующих групп. При необходимости можно определить токи в цепях, находить значения напряжений в контрольных точках.

Метод 1 Последовательное соединение

Для таких соединений применяют представленное выше простое суммирование:

Rобщ = R1 + R2 + … + Rn.

Ток в замкнутой цепи не изменяется. Проверка при подключении мультиметра в любой разрыв покажет одно и то же значение. Вместе с тем на каждом резисторе при разных номиналах элементов будет различное падение напряжения. В соответствии со вторым постулатом Кирхгофа результат вычислений проверяют сложением:

Uакб = U1 + U2 + Un.

К сведению. С помощью приведенной схемы нетрудно рассчитать делитель напряжения на определенный уровень при известных рабочих параметрах источника питания постоянного тока.

Метод 2 Параллельное соединение

В этом варианте соединения удобно оперировать с обратным сопротивлению параметром – проводимостью. Впрочем, допустимо применение и такой исходной формулы:

1/Rобщ = 1/R1 + 1/R2 = 1/(1/R1 + 1/R2) = R1*R2/R1 + R2.

В узле на входе ток распределяется по разным цепям пропорционально номиналам соответствующих резисторов. На выходе происходит обратное преобразование. Проверку вычислений выполняют по принципам первого постулата Кирхгофа.

Метод 3 Комбинированное соединение

Сложные схемы упрощают. Отдельно рассчитывают параллельный участок. Далее создают неразветвленный контур из последовательных элементов.

При необходимости можно трансформировать схему из соединения резисторов «треугольником» в «звезду» или обратно. Ниже приведены формулы для расчета эквивалентных сопротивлений в цепях после преобразования.

Метод 4 Формулы, включающие мощность

Каков будет результат, узнать несложно с помощью любой из подходящих формул:

Исходные параметры берут из предварительных расчетов либо определяют измерением. Можно использовать схемы вычислений с токами в цепях или напряжением на отдельных резисторах (группах последовательно соединенных элементов).

Видео

Последовательное и параллельное соединение

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей — проводников.

Для начала давайте вспомним, что такое проводник? Проводник — это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м 2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

Получается, можно записать, что

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Читайте также:
Какой вид финишной шпаклёвки выбрать и как наносить раствор на стены?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

Если бы у нас еще были резисторы, соединенные параллельно, то для них

В этом случае, сила тока в цепи будет равна:

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

Решение

Воспользуемся формулами, которые приводили выше.

Если бы у нас еще были резисторы, соединенные параллельно, то для них

Далее, воспользуемся формулой

чтобы найти силу тока, которая течет в цепи

2-ой способ найти I

Чтобы найти Rобщее мы должны воспользоваться формулой

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Общее сопротивление цепи – правила, формулы и примеры вычисления

Общие сведения

Прохождение электрического тока через проводник зависит от его проводимости. Это параметр пропорционален силе тока. Другими словами, он определяет способность вещества пропускать через себя электричество без потерь. Зависит проводимость от физических свойств материала, температуры, степени воздействия внешних сил. Обратной ей величиной является сопротивление, то есть характеристика проводника, показывающая его возможность сопротивляться прохождению тока.

Связь между фундаментальными параметрами электротока экспериментально установил Симон Ом. Он выяснил, что сила тока в замкнутой цепи пропорциональна разности потенциалов (напряжению) и обратно пропорциональна сопротивлению: I = U / R. Так, если R равно нулю, то сила тока будет бесконечной.

Способность веществ препятствовать прохождению электротока используется при построении электрических цепей. Так, радиоэлемент, который называется резистором, установленный в определённом месте электроцепи, позволяет получить на нагрузке нужное значение напряжения или тока. Радиодеталь представляет собой двухполюсник, который имеет установленное значение сопротивления или может изменять его.

Реальная замкнутая электрическая цепь состоит из множества активных и пассивных радиоэлементов. Каждый из них обладает каким-то значением сопротивления. В этом случае говорят о внутреннем сопротивлении прибора.

Расчёт выходных характеристик цепи, а именно величин тока и напряжения, требует знания общего сопротивления всей замкнутой цепочки. Иными словами, все элементы, начиная от источника питания и заканчивая нагрузкой, заменяются эквивалентными резисторами. Для цепи сначала считают общее значение сопротивления, а затем вычисляют нужные характеристики. Относительно источника тока, нагрузки и других элементов каждый резистор может быть подключён:

  • последовательно;
  • параллельно.
Читайте также:
Как украсить стаканы своими руками

Вид подключения влияет на общее сопротивление. Формула для его нахождения может быть довольно громоздкой из-за смешанного соединения, поэтому чаще расчёт ведётся в несколько этапов, на каждом из которых выполняется объединение одного или нескольких элементов.

Последовательное подключение

Для удобства при изображении разветвлённой электрической цепи все сопротивления чертят в виде прямоугольников, которые являются резисторами. У любого такого элемента можно выделить два вывода. Один является началом, а другой — концом. С учетом сказанного можно сформулировать определение для последовательного соединения проводников: подключение, при котором конец предыдущего элемента соединён с началом последующего, называют последовательным.

Любой проводник обладает электрическим сопротивлением. Целью преобразования является замена чередующейся последовательности одним резистором. При этом по своим электрическим свойствам он должен не отличаться от всей цепочки. Простыми словами это можно пояснить так: если взять два чёрных ящика, у которых есть по паре выводов, причём один будет содержать всю электроцепь, а другой быть её эквивалентом, то определить, в каком из них находится схема, а где эквивалент, будет невозможно.

При последовательном соединении происходят следующие явления. Пусть имеется прямая цепочка, содержащая n резисторов: R1 + R2 + … +Rn. Сила тока — это величина, которая равняется заряду, протекающему за единицу времени. Можно представить, что в первом резисторе значение электротока будет больше, чем во втором. В результате возникнет «пробка», и скорость движения зарядов замедлится.

В точке соединения элементов произойдёт накопление электронов, что приведёт в ней к росту напряжения. Соответственно, сила тока на первом резисторе будет уменьшаться, а на втором, наоборот, увеличиваться. Это приведёт к выравниванию количества проходящих через резисторы зарядов, поэтому сила тока практически за мгновение во всей последовательной цепи станет одинаковой.

Напряжение — это работа, выполняемая по переносу заряда. По закону сохранения энергии общее её значение равняется их сумме на различных этапах. Общую разность потенциалов можно будет определить, сложив напряжения на каждом элементе. Такой вид подключения описывается следующими выражениями:

  • I = I 1 = I 2 = … = In;
  • U = U1 + U2 + … +Un.

Эти равенства являются фундаментальными для нахождения параметров при повторении резисторов в цепи. Используя закон Ома, можно найти, чему будет равняться сопротивление цепи. Формула для его нахождения будет выглядеть так: Rпос = R 1 + R 2 +… + Rn.

Параллельное соединение

По распространённости такой вид соединения чаще встречается, чем последовательное подключение. При нём проводники соединены так, что начала всех резисторов сводятся в одну точку электрической цепи, а концы — в другую. Для того чтобы заменить разветвлённое подключение одним эквивалентным элементом, нужно знать, как правильно рассчитать ток и напряжение.

Пусть имеется цепь, состоящая из R1 + R2 + … +Rn параллельно включённых радиоэлементов. На неё подаётся напряжение U. На вход схемы поступает ток с силой I. Используя закон сохранения зарядов, можно выполнить следующие рассуждения: ток втекает в узел, к которому подсоединены начала всех резисторов, затем он растекается по их выводам.

В результате через первую ветвь потечёт ток I1, вторую — I2, в энную — In. Поскольку заряд не может пропасть, то какое его количество втекло в узел, такое же должно разойтись по всем ветвям для одного и того же момента времени. Значит, сумма токов на всех выводах будет равняться поступающему на них значению.

Электростатическое поле является потенциальным, то есть работа по перемещению заряда из одной точки в другую не зависит от траектории, по которой перемещается носитель. Следовательно, при переносе одного кулона по любой ветви нужно будет совершить одинаковую работу. Из приведённых рассуждений следует, что при параллельном соединении формулы, с помощью которых можно рассчитать характеристики электрической цепи, будут следующими:

  • I = I1 + I2 + … +In;
  • U1 = U2 = … = Un.

Таким образом, вычисление эквивалентного сопротивления, которым можно будет заменить всю цепь в соответствии с законом Ома, выполняется по формуле: 1 / R пар = 1 / R 1 + 1 / R 2 + … + 1 / Rn. Для одинаковых проводников при вычислении сопротивления можно использовать приведённую формулу. Это позволяет в некоторых случаях упростить расчёт.

Согласно правилу сложения дробей c одинаковым знаменателем можно записать равенство: 1 / R1 + 1 / R2 + … + 1 / Rn = N / R1. Отсюда следует, что Rпар = R1 / N, где N равно числу резисторов. По аналогии можно посчитать общее сопротивление по упрощённой формуле для двух элементов: (1 / R1) + (1 / R2) = (R 2 + R 1) / R 1 * R 2. Это довольно удобные формулы для практического применения.

Читайте также:
Как отделать откосы входной двери искусственным камнем, ламинатом, МДФ панелями: видео, фото

Решение задач

Для вычисления сопротивления любого смешанного соединения нужно запомнить всего две формулы — выражения для нахождения величины при последовательном и параллельном подключении. Поочерёдно комбинируя их применение, сложную схему можно заменить одним сопротивлением. Но не всегда приходится применять формулы. Есть задания, в которых неизвестную величину можно вычислить в уме.

Например, пусть имеется параллельное подключение из четырёх резисторов. Сопротивления проводников равняются 10 Ом, 12 Ом, 15 Ом, 20 Ом. Нужно образовать из них резистор, не изменяющий характеристики электрической цепи. Чтобы выполнить расчёт в уме, следует каждый элемент представить в виде комбинации из 60-омных резисторов. Тогда к первому нужно будет добавить шесть, ко второму — пять, к третьему — четыре, к четвёртому — три. Общее количество резисторов получится 18. Значит, Rобщ = 60 / 18 = 10 / 3 = 3,3 Ом.

Из типовых задач, в которых необходимо найти сопротивление цепи, предлагающихся в школе на уроках физики, можно привести следующие:

    Найдите ток в цепи, если вольтметр, подключённый к одному из трёх последовательно соединённых проводников, показывает 100 В. Сопротивление элементов составляет: R1 = R2 = 5 Ом, R3 = 15 Ом. В задаче три резистора подключены в линию, значит, их полное сопротивление равно: R = R 1 + R 2 + R 3 = 25 Ом. У вольтметра r внутреннее равно бесконечности. Следовательно, I = U / R = 100 / 25 = 4 A.

Каково будет сопротивление каждого из резисторов, если при их последовательном соединении ток равен 3A, а при параллельном — 16A. Напряжение в сети составляет 120 В. При первом способе соединения Iпосл = U / (R1 + R2), при втором Iпар = U / Rпар = U * (R1 + R2) / R1 * R2. Из первой формулы следует, что R1 + R2 = U / Iпос. Тогда: I пар = U 2 / Iпос * R 1 * R 2 → R 1 * R 2 = U 2 / I пар * I пос. Используя теорему Виета, можно составить квадратное уравнение. После его решения искомые величины будут равны: R 1 = 30 Ом, R 2 = 10 Ом.

Следует отметить, что приборы для измерения тока, напряжения и даже ёмкости используют особенности вычисления сопротивления цепи. Так, вольтметр имеет бесконечно большой внутренний импеданс, что позволяет подключать его параллельно к измеряемым точкам без внесения изменения в протекающий сигнал.

Амперметр же, наоборот, характеризуется пренебрежимо малой величиной внутреннего сопротивления, поэтому и подключают его в разрыв линии, на которой выполняют измерения.

Резистор и сопротивление

Каталог

Показать каталог
  • Arduino и совм. платы
  • Raspberry
  • Наборы Arduino
  • Платы расширения
  • Модули
    • Радиомодули
    • Bluetooth
    • RFID
    • Wi-Fi, Ethernet, GPS, GSM
    • Звук и видео
    • Свет
    • Память и RTC
    • Генераторы сигналов
    • Расширения
    • Термоэлектрические
  • Датчики
    • Газа
    • Климатические
    • Механического воздействия
    • Пространства
    • Света и цвета
    • Тактильные
    • Холла и тока
  • Реле
  • Двигатели
    • Коллекторные
    • Бесколлекторные
    • Сервоприводы
    • Шаговые
    • Драйверы
  • Механика
    • Платформы
    • Колеса
    • Замки
  • Радиоконструкторы
  • Радиокомпоненты
    • Резисторы
      • Постоянные
      • Потенциометры
      • Варисторы
      • Термисторы
      • Фоторезисторы
    • Конденсаторы
    • Диоды
    • Светодиоды
    • Стабилитроны
    • Диодные мосты
    • Транзисторы
      • Биполярные
      • IGBT
      • Полевые | MOSFET
    • Стабилизаторы
    • Предохранители
    • Индуктивность
    • Резонаторы
    • Тиристоры
  • Дисплеи и индикаторы
  • Макетные платы
    • Паечные
    • Беспаечные
  • Провода и шлейфы
  • Кабели и переходники
  • Адаптеры, разъемы и штекеры
  • Микроконтроллеры и микросхемы (IC)
  • Программаторы и преобразователи
  • Управление и ввод
  • Элементы питания
    • Аккумуляторы и батареи
    • Зарядные устройства
    • Отсеки и коннекторы
    • Преобразователи и блоки питания
    • BMS платы
    • Сетевые фильтры
  • Измерительные приборы
    • Мультиметры и щупы
    • Тестеры
    • Вольтметры / Амперметры
    • USB-нагрузка
  • Всё для пайки
    • Паяльники и паяльные наборы
    • Оборудование для пайки
    • Расходные материалы
    • Изоляторы
  • Светодиодная продукция
    • Светодиодные ленты
    • Светодиодные модули
    • Контроллеры
    • Кабели и клипсы
    • Гирлянды
  • Инструменты и материалы
    • Инструменты
    • Корпуса и крепления
    • Магниты
    • Расходные материалы
    • Органайзеры и пакеты
    • Кулеры
  • Карты памяти и ридеры

Резистор и сопротивление

Теория
КОМПОНЕНТЫ
  • Адресуемая светодиодная лента
  • Геркон
  • Диод
  • Зуммер
  • Кнопка
  • Кварцевый резонатор
  • Конденсатор
  • Макетная плата
  • Резистор
  • Реле
  • Светодиод
  • Светодиодные индикаторы
  • Сервопривод
  • Транзистор
ARDUINO
  • Что такое Arduino?
  • Среда разработки Arduino IDE
  • Онлайн-сервис TinkerCAD – эмулятор Arduino
  • Сравнение плат Arduino. Какую выбрать?
  • Как прошить плату Arduino с помощью другой Arduino (ArduinoISP)
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм

Последовательное соединение резисторов

Это справедливо и для большего количества соединённых последовательно резисторов:

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

R = 200 + 100 + 51 + 39 = 390 Ом

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I 2 x R = 0,256 2 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

Читайте также:
Конструкторы Лего в дизайне интерьеров фото

P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

Параллельное соединение резисторов

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U 2 /R1 = 100 2 /200 = 50 Вт;
P2 = U 2 /R2 = 100 2 /100 = 100 Вт;
P3 = U 2 2/R3 = 100 2 /51 = 195,9 Вт;
P4 = U 2 2/R4 = 100 2 /39 = 256,4 Вт

Если сложить полученные мощности, то общая Р составит:

Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт

Калькулятор сопротивления онлайн: формулы расчёта для решения задач

Собирая самостоятельные схемы, начинающие радиолюбители сталкиваются с необходимостью установить то или иное сопротивление, величины которого нет в стандартном ряде или на руках. Поэтому нужная величина импеданса подбирается путём параллельного или последовательного соединения элементов. Для правильного вычисления эквивалентного значения проще всего воспользоваться калькулятором для сопротивления, но можно и провести вычисления самостоятельно по несложным формулам.

Назначение и определение импеданса

Практически ни одно электронное устройство не обходится в своей схеме без резисторов. Являясь пассивными элементами, они имеют основное предназначение — ограничивать величину тока в электрической цепи. Кроме токоограничения, они служат делителями напряжения или шунтами в измерительных приборах.

Электрическое сопротивление — это величина, имеющая физическую природу и характеризующая возможность проводника пропускать электрический ток. Принцип работы резистора был описан выдающимся экспериментатором Омом. Позже в его честь и была названа единица измерения электрического сопротивления — Ом. Учёный, проводя ряд экспериментов, установил зависимость между силой тока, напряжением и сопротивлением в проводнике. В результате была выведена простая формула, известная как закон Ома: I = U/R, где:

  • I — проходящая через проводник сила тока, измеряемая в Амперах;
  • U — напряжение, приложенное к проводнику, единица измерения — Вольт;
  • R — сопротивление проводника, измеряется в Омах.

Позже устройства, использующиеся только в качестве элементов сопротивления в электрических цепях, получили название — резисторы. Такие приборы, кроме величины сопротивления, характеризуются мощностью, рассчитывающейся по следующей формуле: P = I2 * R. Полученная величина измеряется в Ваттах.

В схемотехнике используется как параллельное, так и последовательное соединение проводников. В зависимости от этого изменяется и величина импеданса участка цепи. Вид соединения, если он не используется для подбора нужного значения, как раз и характеризует применение резисторов в первом случае как токоограничителей, а во втором — как делителей напряжения.

На схемах резисторы обозначаются в виде прямоугольника и подписываются латинской буквой R. Рядом указывается порядковый номер и значение сопротивления. Например, R23 1k обозначает, что резистор с номером 23 имеет сопротивление, равное одному килоОму. Полоски, изображённые внутри прямоугольника, характеризуют мощность, рассеиваемую на проводнике.

Фундаментальный закон сохранения энергии гласит: энергия никуда не исчезает и из ниоткуда не появляется, а только изменяет форму. Поэтому при ограничении тока часть энергии трансформируется в тепло. Именно эту часть и называют мощностью рассеивания резистора, т. е. такую её величину, которую может выдержать сопротивление без изменения своих параметров.

Сам по себе резистор может иметь различную конструкцию и вид. Например, быть проволочным, керамическим, слюдяным и т. п. Маркируется он тремя способами:

  1. Цветной полосочной системой. Каждая полоска отвечает за определённый множитель. Расшифровку полосок можно взять из справочников или онлайн-калькуляторов.
  2. Цифрами и буквами. Число указывает непосредственно значение сопротивления, а буква — множитель. Например,15M — пятнадцать мегаОм.
  3. Цифровая. Обычно используются три цифры, первая и вторая обозначают значение сопротивления, а последняя — множитель. Например, 103 — десять килоОм.

Поэтому видя, какие резисторы установлены в схеме, даже начинающему радиолюбителю не составит труда рассчитать общее сопротивление, особенно используя онлайн-калькулятор параллельного соединения резисторов или последовательного. В случае невозможности различить маркировку на корпусе его сопротивление возможно измерить мультиметром. Но опытные электротехники знают, что для точного измерения понадобится один вывод сопротивления отсоединить от схемы. Связано это как раз с видом подключения проводника.

Читайте также:
Маскируем батареи отопления с помощью техники декупаж

Параллельное соединение

Такое соединение резисторов получается путём объединения двух и более электрических устройств, при котором их одни выводы соединяются друг с другом и образовывают первую общую точку, а другие, аналогично первым, образовывают вторую общую точку. В этом случае напряжение на всех элементах одинаковое, а проходящая сила тока зависит от их импеданса.

Формула параллельного соединения резисторов выглядит следующим образом:

R = (R1*R2*R3…*Rх) / (R1+R2+R3…+Rх), где Rх – порядковый номер резистора.

Отсюда следует, что сила тока, протекающая через каждый проводник, находится по формуле: In = U/Rn.

Исходя из этого, при параллельном соединении результирующий импеданс двух и более резисторов будет меньше самого меньшего значения сопротивления в соединении. При этом когда параллельно включены только два резистора, имеющие одинаковый номинал, то их можно заменить эквивалентом, равным одной второй от величины этого номинала.

Так можно соединить и сотню резисторов, тогда эквивалентное сопротивление определяется как сотая часть от номинала. Например, пусть будет участок схемы с десятью резисторами, включёнными параллельно друг другу с номиналом каждого равного 10 Ом, тогда общее сопротивление будет составлять десятую часть, а именно Rоб = 10/10 = 1 Ом.

Важно отметить, что при таком соединении величина тока поделится на каждый элемент, поэтому и резисторы можно применить меньшей мощности, чем если бы использовался эквивалент, заменяющий всё параллельное подключение.

Пример подбора замены

При разработке прибора возникла потребность использовать на участке цепи резистор с сопротивлением 6 Ом. При изучении номинального ряда стандартных значений, выпускаемых промышленностью, можно отметить, что резистора на 6 Ом в нём нет.

Для получения нужного значения понадобится воспользоваться параллельным включением двух элементов. Эквивалентное значение сопротивления для двух резисторов в таком случае находится в следующем порядке:

  • 1/R = (1/R1) + (1/R2);
  • 1/R = (R1+R2) / (R1*R2);
  • Rэ = (R1*R2) / (R1+R2).

Из решения видно, что если R1 совпадает по номиналу с R2, то общая величина сопротивления равна половине значения одного из элементов. Поэтому при требуемом номинале, равном 6 Ом, это значение составит: Rx = 2*6 = 12 Ом. Для проверки результата следует подставить полученный ответ в формулу: Rэ = (R1*R2) / (R1+R2) = (12*12) / (12+12) = 6 Ом.

Таким образом, решением поставленной задачи будет параллельное включение двух резисторов с величиной сопротивления, равной 12 Ом.

Задача на нахождение эквивалента

Пусть существует схема с тремя параллельно включёнными резисторами и для её упрощения необходимо заменить их одним элементом. Номиналы проводников составляют: R1 = 320 Ом, R2= 10 Ом, R3 = 1 кОм. Для решения задачи используется уже известная формула:

  • 1/R = (1/R1) + (1/R2) + (1/R3);
  • Rэкв = (R1*R2*R3) / (R1+R2+R3).

Перед тем как подставлять величины в формулу, их все понадобится привести к международной системе единиц (СИ). Так, один килоОм равен 1000 Ом, при подставлении этого значения получается ответ: Rэ = (320*1*1000) / (320+10+1000) = 2406 Ом или 2,4 кОм, что как раз соответствует величине из стандартного ряда. Такая методика расчёта применяется для любого количества параллельно соединённых резисторов.

Последовательное включение

Такой вид включения подразумевает вид соединения, когда резисторы соединяются между собой только одним выводом, образовывая цепочку, при этом между её началом и концом отсутствует проводимость, соответствующая режиму короткого замыкания. При использовании последовательного соединения сила тока будет одинакова для любого проводника, а разность потенциалов на участке цепи составит значение равное сумме разностей потенциалов, на выводах каждого из проводников. Расчёт общего значения импеданса в этом случае совсем несложен, для этого просто суммируются все номинальные значения элементов входящих в состав цепочки: Rобщ=R1+R2+…+Rn.

Например, в схеме применяется цепочка сопротивлений, состоящая из пяти резисторов: R1=32 Ом, R2=16 Ом, R3=1 кОм, R4=4,7 кОм, R5=1 Ом. После приведения всех номиналов к международной системе, получится ответ, равный: Rобщ = 32+16+1000+4700+10=5758 Ом или 5,75 кОм, что соответствует стандартному значению 5,6 кОм.

Смешанное подключение

В этом случае на участке схемы используется комбинация параллельного и последовательного включения элементов. Такое соединение часто называется параллельно-последовательным:

  • При последовательном включении общий импеданс элементов прямо пропорционален сумме сопротивлений каждого из резисторов.
  • При параллельном включении проводников значение, обратное сумме импеданса цепи, соответствует сумме значений, обратных сопротивлениям параллельно включённых элементов.

Используя эти правила, которые справедливы для любого числа соединённых проводников в схеме, определяется общее значение импеданса для любого вида подключения. Для того чтобы определить эквивалентное значение сопротивления параллельно-последовательного соединения, участок схемы делится на небольшие группы из параллельно или последовательно включённых резисторов. Затем используется алгоритм, помогающий оптимально посчитать значение эквивалента:

Определяется общее сопротивление всех узлов в схеме с параллельным подключением резисторов:

  1. При нахождении в этих узлах последовательно соединённых проводников первоначально считается их сопротивление.
  2. Как только значения эквивалентных значений вычислены, схема упрощается до последовательной цепочки из эквивалентных резисторов.
  3. Находится окончательное значение общего сопротивления.
Читайте также:
Кровельная пленка для дома своими руками

Например, существует схема, в которой надо определить полное сопротивление цепи, при этом сопротивление резисторов R1=R3=R5=R6=3 Ом, а R2 =20 Ом и R4=24 Ом. Сопротивления R3, R4, и R5 включены последовательно, поэтому общий импеданс на этом участке цепи равен: Rоб1 = R3+R4+R5 = 30 Ом.

После замены R3, R4, R5 на Rоб1 резистор R3 окажется подключённым параллельно этому сопротивлению. Поэтому импеданс на этом участке будет равен:

Rоб2 = (R2* Rоб1) / (R3+Rоб1) = (20*30) / (20+30) = 12 Ом.

Резисторы R1 и R6 включены с Rоб2 последовательно, а это значит, что эквивалент всей схемы равен: Rэкв = Rоб1+Rоб2+ R6 = 3+12+3 = 18 Ом.

Так шаг за шагом вычисляется эквивалентное значение любой сложности схемы. При множестве проводников, входящих в электрическую цепь, нетрудно ошибиться при расчётах, поэтому все операции выполняются аккуратно или используются онлайн-калькуляторы.

Онлайн-расчёт на калькуляторе

Создано множество интернет-страниц, позволяющих найти сопротивление параллельных резисторов за несколько секунд, используя в своих вычислительных алгоритмах формулы для расчёта параллельного соединения. Такие калькуляторы достаточно полезны радиолюбителям-конструкторам или специалистам РЭА при возникновении затруднения с выбором нужного номинала резистора для замены его в цепи электронного устройства.

Внешний вид онлайн-приложений может отличаться друг от друга, а вот принцип работы одинаков. Немаловажным является в работе программ тот факт, что алгоритмы их вычисления используют разную точность в округлении результата, поэтому ответ в некоторых программах при сравнении может немного отличаться.

Само приложение обычно представляет собой ячейки, в которые вносится величина значений резисторов в международной системе измерений. После того как все поля заполнены, нажимается кнопка «Рассчитать» и получается ответ в ячейке напротив. Ответ рассчитывается в Омах. В некоторых приложениях функциональность может быть расширена, это такие возможности, как автоматический перевод значений резисторов в систему СИ, отображение наиближайшего стандартного значения сопротивления из номинального ряда, близкого к полученному ответу.

Полезной функцией может быть и обратный переход, когда вводится эквивалентное сопротивление, а в ответе выдаётся комбинация номиналов проводника для параллельного включения.

Таким образом, расчёт с использованием онлайн-калькуляторов помогает решить задачу не только быстро, но и безошибочно, чем часто пользуются не только радиолюбители, но и профессионалы.

Соединение резисторов

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов.

В жизни последовательное соединение резисторов имеет вид:


Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов.

Можно соединять резисторы и параллельно:


Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Читайте также:
Как создать миниатюрную кузню

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до “наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.


Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.


Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

КАК ОТЛИЧИТЬ МЕДЬ ОТ ЛАТУНИ: СРАВНЕНИЕ И РАЗНИЦА

Медь и латунь давно зарекомендовали себя как одни из самых популярных материалов, используемых в различных областях от промышленности до бытового использования. Высокая востребованность и некоторое сходство влечет за собой необходимость учета ряда нюансов, одним из которых как раз является разница меди и латуни между собой и сравнение по ряду качеств. Разобраться в отличиях меди и латуни можно путем рассмотрения каждого металла и присущих ему качеств.

СОДЕРЖАНИЕ СТАТЬИ

  • Немного о меди
  • Немного о латуни
  • Как отличить медь от латуни по температуре плавления
  • Разница меди и латуни по плотности и удельному весу
  • Как отличить медь от латуни по цвету
  • Как отличить медь от латуни по звуку
  • Сравнение твердости
  • Как отличить медь от латуни по маркировке
  • Как отличить медь от латуни по стружке
  • Анализ меди и латуни кислотой
  • Использование анализатора
  • Сравнение меди и латуни методом нагревания
  • Разница между латунью и медью в цене
  • Как отличить медь от латуни: видео
  • Как отличить медь от латуни: вывод

НЕМНОГО О МЕДИ

По своей сути медь является соединением кристаллов серебра, кальция, золота, свинца и никеля. Такое сочетание является основополагающим в приобретении тех или иных свойств.

Физические свойства меди:

  • Высокий показатель мягкости;
  • Высокий уровень пластичности;
  • Хорошая тягучесть;
  • Высокие электро – и теплопроводимость.

Химические свойства меди

  • Невысокие показатели окисляемости, в случае использования в стандартных условиях;
  • Возможность вступления в реакцию с галогенами, селеном и серой;
  • Азот, водород и углерод не являются реакционерами при вступлении в контакт с медью;
  • Растворяется в концентрате азотной кислоты, в то время, как разбавленные серная и соляная кислоты к реакции не приводят.

Области применения меди

  • Электротехника. Низкое удельное сопротивление, допускает применение меди в изготовлении силовых и других типов кабелей, проводов и проводников различного направления. Необходимо учитывать, что наличие дополнительных примесей, способно значительно снижать электропроводимость металла;
  • Устройства связанные с теплообменом. Хорошая теплопроводимость меди делает ее целесообразной при изготовлении радиаторов охлаждения, системах кондиционирования и отопления, компьютерных системах и тепловых трубках;
  • Трубопроизводство. Высокие показатели механической прочности и удобство обработки, делает медь популярным материалом в производстве бесшовных труб круглого сечения;
  • Изготовление посуды. Наиболее часто медь используется в качестве материала для изготовления декоративной посуды и емкостей для хранения продуктов;
  • Украшения. Красивый оттенок меди и экологичность делают ее привлекательным материалом для производства бижутерии;
  • Строительство. Благодаря высоким антикоррозийным свойствам, медь с успехом используется как основной материал кровли жилых домов;
  • В качестве лигатурного связующего при работе с другими металлами;
  • Медицина. В медицине медь используют как составляющий компонент некоторых мазей и капель;
  • Пиротехнические устройства.
Читайте также:
Маскируем батареи отопления с помощью техники декупаж

Преимущества меди

  • Высокие антикоррозийные свойства;
  • Эстетически привлекательный внешний вид;
  • Высокая теплопроводимость;
  • Хорошие показатели гибкости и пластичности с сохранением прочности;
  • Сопротивляемость низкого уровня.

Недостатки

Высокая цена. Основным(условным) недостатком меди можно считать достаточно высокую стоимость материала.

НЕМНОГО О ЛАТУНИ

Латунь представляет собой сплав меди и цинка. Процентное содержание цинка может варьироваться от 5 до 45%. В отдельных случаях процент цинкового содержимого может несколько превышать 45%- й показатель. Цинк в латуни призван улучшить качество металла, при этом значительно снизив его стоимость по сравнению с исходным материалом – медью.

Латунь по своему составу выделяет две основные группы:

  • Двухкомпонентные. Состоят из двух составляющих-меди и цинка. Причем последний является основным связывающим компонентом и составляет обычно от 30 до 50%. Двухкомпонентные латуни имеющие в своем составе до 97 процентов меди, называют красными. Второе их название “томпак”. Латунь с процентным содержанием меди не превышающим 35, называют желтой;
  • Многокомпонентные. Сплавы, включающие в свой состав несколько лигатурных добавок. Чаще всего в качестве усилителей используются марганец, олово, никель, свинец и кремний.

Маркировка латуневого сплава напрямую зависит от типа и процентного содержания составляющих. Так, двухкомпонентные латуни маркируются буквенными и цифровыми обозначениями, где Л-обозначает материал, а последующие цифры говорят о процентном содержании меди. Многокомпонентные сплавы имеют более сложную маркировку, но суть остается такой же, как и у простой латуни.

Основные свойства латуни

  • Легкость в обработке под давлением;
  • Хорошие показатели антикоррозийной устойчивости;
  • Высокие температуры, агрессивные среды, воздействие сернистого газа увеличивают риск появления коррозии;
  • При понижении температур повышается пластичность, при этом прочность не уменьшается;
  • При воздействии температур от 200 до 600 градусов хрупкость повышается в значительной мере;
  • Хорошие антифрикционные качества;
  • Хорошая возможность сваривания с другими металлами.

Области использования сплава латуни

  • Изготовление втулок и прочих переходных деталей;
  • Производство комплектующих моторных агрегатов;
  • Сантехническое оборудование и аксессуары;
  • Элементы декорирования различной направленности;
  • Судостроение;
  • Армейские нужды.

Преимущества латуни

В сравнении латуни с медью имеются общие свойства и характеристики:

  • Легкость в обработке и полировке;
  • Эстетичный внешний вид;
  • Лояльность томпака при сваривании с другими металлами;
  • Высокие антифрикционные свойства.

И все же: как отличить медь от латуни? Существует множество показателей, по которым можно увидеть, чем отличается медь от латуни, такие как разница в температуре, цвету, твердости и т.д.

ОТЛИЧИЕ МЕДИ И ЛАТУНИ ПО ТЕМПЕРАТУРЕ ПЛАВЛЕНИЯ

Основная разница между медью и латунью в вопросе температурного режима заключается в том, что медь подвергается плавлению при температуре в 1082 градусов, в то время, как большая часть сплавов латуни расплавляется при 880-1000 C. Стоит учитывать, что температура плавления обоих материалов как показатель различия может считаться условным, в связи с тем, что температурные показатели плавления латуни изменяются(возрастают и уменьшаются)в зависимости от добавок, входящих в состав сплава. Добиться подобных условий в домашних условиях практически не возможно. В связи с этим, для проведения идентификации при помощи высокой температуры, можно использовать метод нагревания газовой горелкой. При достижении 600Cотметки, на поверхности сплава латуни появится бледно-пепельный налет оксида цинка.

РАЗНИЦА МЕДИ И ЛАТУНИ ПО УДЕЛЬНОМУ ВЕСУ И ПЛОТНОСТИ

Сплав латуни в сравнении с медью имеет меньшую плотность, а следовательно и удельный вес будет меньше, чем у меди. Определить, что тяжелее: медь или латунь в случае, если речь идет о небольшом объеме, без использования весов будет достаточно проблематично.

Определение типа материала при помощи весов

  • Определить плотность. Данная характеристика имеет фиксированные значения и соответствует 8.96 г/см3для меди и 8.73г/см3для латуни;
  • Подбор необходимого оборудования. Таким оборудованием станут: пружинные весы, рулетка, калькулятор и емкость с водой цилиндрической формы;
  • Определение массы путем взвешивания;
  • Масса переводится в граммовую единицу измерения;
  • Расчет объема в кубических сантиметрах. Для образцов правильной формы необходимо произвести измерения длинны, ширины и высоты, и произвести умножение значений. Для объектов неправильной формы расчет производится при помощи погружения в жидкость и расчета вытесненного объема;
  • Расчет плотности по полученным данным. Для данного действия масса и объем переводятся в необходимые размерности и делятся между собой.
Читайте также:
Какой вид финишной шпаклёвки выбрать и как наносить раствор на стены?

Полученные результаты сравниваются со стандартными показателями и становятся определяющим того, каким именно материалом является образец.

КАК ОТЛИЧИТЬ МЕДЬ ОТ ЛАТУНИ ПО ЦВЕТУ

  • В случае образования на металле налета патины, его необходимо подвергнуть чистке при помощи не агрессивных бытовых химических средств, или методом полировки;
  • Объект помещается в источник яркого белого освещения, в качестве которого может выступать флуоресцентная лампа;
  • В качестве аналитического образца для облегчения определения меди и латуни по цвету можно использовать отполированную медную монету в 50 копеек 1997-2006 годов выпуска. Медь с отсутствием примесей имеет красновато-коричневый оттенок;
  • Латунь имеет более желтый оттенок по сравнению с медью. Стоит учитывать, что встречаются образцы латуни с высоким содержанием цинковых примесей. Такой сплав будет иметь светло-золотой или серый оттенок.

Стоит учитывать, что данный способ отличия меди от латуни не всегда может быть доподлинным. Так, например, сплав, имеющий в своем составе до 85% медной составляющей, отличить от чистого металла будет возможно только по едва заметному желтоватому оттенку, в то время, как основной цвет будет аналогичен цветовой гамме меди.

КАК ОТЛИЧИТЬ МЕДЬ ОТ ЛАТУНИ ПО ЗВУКУ

Данный критерий целесообразно применять к достаточно большим по размеру образцам меди и латуни. В противном случае необходимости использования вспомогательного оборудования избежать не удастся. При использовании звукового восприятия, необходимо знать, что глухой звук характерен для низкой плотности, а звонкий – для более высокой:

  • Медные образцы, обладающие большей мягкостью и низкой плотностью воспроизводят более глухие, низкокачественные звуки;
  • Латунь в отличие от меди дает высокий, звенящий звук с тенденцией к нарастанию.

РАЗНИЦА В ТВЕРДОСТИ

Для подобного способа сравнения меди и латуни подойдут предметы, допустимые для изгиба и нанесения вмятин:

  • Медь, как более чистый материал обладает большей пластичностью и возможностью деформироваться без нарушения целостности;
  • Латунь, являющаяся сплавом меди и усиливающих добавок, имеет низкую пластичность и более высокие показатели прочности и хрупкости в сравнении с медью, в связи с чем при попытке деформации, окажет большую сопротивляемость и может лопнуть.

КАК ОТЛИЧИТЬ МЕДЬ ОТ ЛАТУНИ ПО МАРКИРОВКЕ

Различие меди и латуни по маркировке возможно в случае ее сохранения. Для идентификации можно использовать маркировочную таблицу.

Отдельно стоит выделить маркировочные обозначения несколько устаревшего образца:

  • МО. Бескислородная марка, используемая в электронике;
  • М1. Раскисленный металл с повышенными антикоррозийными свойствами.

ОТЛИЧИЕ МЕДИ И ЛАТУНИ ПО СТРУЖКЕ

Для подобного сравнения необходимо наличие станка по металлу или дрель с насадкой большого диаметра:

  • Медь. Отличается витееватой формой, длинной без зазубрин спиралью и хорошей пластичностью (Рисунок 1);
  • Латунь. Как твердый и хрупкий материал дает рассыпчатую игольчатую стружку без четкого витка (Рисунок 2).

АНАЛИЗ МЕДИ И ЛАТУНИ КИСЛОТОЙ

Для метода используется соляная кислота, позволяющая провести идентификацию в случаях, когда другие способы не целесообразны по ряду причин.

Фрагмент исследуемого материала помещается в емкость с соляной кислотой:

  • Медь очищается от патинового налета не вступая в реакцию с кислотой;
  • Латунь покрывается беловатым налетом оксида цинка.

ИСПОЛЬЗОВАНИЕ АНАЛИЗАТОРА

Применение прибора не может считаться абсолютным критерием распознавания разницы между латунью и медью, так как основными данными будут являться физические свойства, в том числе высокая электропроводимость в случае с медью. Для исследования лазерный луч прибора наводится на предварительно очищенный участок металла. Изучив показатели можно определить принадлежность материала. Такой метод является не только малоинформативным, но и достаточно дорогостоящим.

СРАВНЕНИЕ МЕДИ И ЛАТУНИ МЕТОДОМ НАГРЕВАНИЯ

Принцип метода аналогичен системе плавления и заключается в оказании воздействия высоких температур на поверхность металла. В результате чего на латуни образовывается беловатый-пепельный налет оксида цинка, в то время как медь подобной реакции не дает.

РАЗНИЦА МЕЖДУ ЛАТУНЬЮ И МЕДЬЮ В ЦЕНЕ

Стоимость чистого металла значительно дороже сплава. Таким образом, основные отличия меди и латуни можно отобразить в таблице:

Медь Латунь
Пластичная, мягкая Твердая
Красновато коричнево-розовый оттенок Золотистый оттенок
Звук ниже при ударе Высокий звук
Тяжелая Легче
Стружка скручивается в спираль Стружка игольчатая

КАК ОТЛИЧИТЬ МЕДЬ ОТ ЛАТУНИ И ДРУГИХ МЕТАЛЛОВ: ВИДЕО

КАК ОТЛИЧИТЬ МЕДЬ ОТ ЛАТУНИ: ВЫВОД

Однозначно решить, что лучше: медь или латунь и как отличить медь от латуни – вряд ли удастся. Каждый из материалов обладает набором преимущественных отличительных, которые могут быть максимально полезны при использовании по назначению и с учетом всех нюансов. Наиболее популярными способами обнаружения отличий и идентификации материалов можно считать прежде всего оценку их физических свойств, визуальный осмотр, основанный на отличиях и оценку реакции на воздействия агрессивных сред.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: