Как расплавить медь в домашних условиях?

Самостоятельное плавление меди

Медные изделия получили широкое распространение не только в промышленности, но и в быту. Это дает повод домашним мастерам задуматься о том, как самостоятельно изменить качество материала для дальнейшего изготовления металлических предметов. Плавка меди – особая технология, обеспечивающая ее переход из твердого состояния в жидкое под влиянием высоких температур.

Основные характеристики меди

Металл легко поддается обработке. О его уникальных свойствах знали еще наши предки, о чем свидетельствуют исторические сведения и археологические находки. В природе он встречается как в соединениях, так и в самородном варианте. Поверхность меди мягкая, желтовато-бурого оттенка. Контактируя с воздухом, она затягивается оксидной пленкой. Технические характеристики меди следующие:

  • Занимает второе место после серебра по электропроводности и теплопроводности.
  • Невысокая температура плавления: для чистой меди она составляет 1083 градусов, для медных сплавов – от 930 до 1140 градусов.
  • При температуре 2560 градусов материал начинает закипать.
  • Медь является диамагнетиком.
  • Подбирая лом для вторичной переработки, важно помнить, что электротехническая медь является самой чистой – без примесей.
  • Сплавы из бронзы и латуни, из которых сделаны многие раритетные вещи, могут содержать в себе ядовитые вещества, например, мышьяк.

С такими веществами нужна особая осторожность.

Медь является красивым материалом. Изделия из него выглядят роскошно, благородно. Этим свойством продукт привлекает к себе внимание многих домашних умельцев.

Характеристика способов плавления меди

Плавка меди дома и на производстве проходит одинаково. Процесс изменения состояния осуществляется под влиянием повышения температуры. При достаточном количестве тепла металлическая структура предмета разрушается. Добиться такого эффекта можно несколькими способами.

Муфельная печь

Литье с использованием лабораторной муфельной печи, в которой имеется регулировка температуры нагрева. Это довольно простой метод. Сырье предварительно измельчают на части. Чем они меньше, тем быстрее будет плавление.

Подготовленный материал кладут в графитовый тигель и помещают в предварительно разогретую печь. Форма для заливки должна иметь температуру плавления больше, чем у меди. Нагревательное устройство серийного производства оборудовано специальным окном, позволяющим следить за технологическим процессом.

Когда медь достигнет жидкого состояния, тигель железными щипцами извлекают из печи. Проволочным крюком с поверхности расплавленного металла к краям тигля убирают оксидную пленку. После проделанных манипуляций жидкую консистенцию аккуратно заливают в заранее приготовленную емкость.

Газовая горелка

Также осуществляется плавка меди с применением газовой горелки. При отсутствии тигельной печи вполне подойдет ручная портативная газовая горелка. Ее нужно разместить под дном емкости с металлом и следить за тем, чтобы пламя полностью охватывало днище.

Метод позволяет быстро окислять материал, так как предполагает наличие тесного контакта с воздухом. Чтобы не образовывалась толстая оксидная пленка, расплавленную массу присыпают измельченным древесным углем.

Паяльная лампа

Литье меди на основе паяльной лампы происходит так же, как и с газовой горелкой. Способ применим для легкоплавких металлов.

Растопить медь или её сплавы можно горном. Для этого на хорошо раскаленный древесный уголь помещают тигель с измельченным металлом. Для ускорения процесса используют домашний пылесос, включенный на режиме выдувания.

Труба должна быть небольшого диаметра с железным наконечником, так как пластик расплавится под влиянием высокой температуры. Метод идеально подходит тем людям, кто регулярно занимается литьем металла и в больших объемах.

Микроволновка

Расплавить медь поможет мощная микроволновая печь с измененной конструкцией. Для этого убирают вращающуюся тарелку-поддон. Из огнеупорного кирпича делают муфельную печь, в которую помещают исходный материал. Устройство необходимо для повышения теплосберегающих свойств сырья и защиты элементов техники от перегрева.

Чистую медь трудно плавить, поскольку она в жидком виде обладает плохой текучестью. Специалисты не советуют из такого материала делать мелкие и сложные детали. Для этого подойдут многокомпонентные соединения на основе латуни, олова или цинка, которым высокие температуры не нужны.

Самостоятельная выплавка меди

Для многих людей плавка меди и изготовление из нее всевозможных изделий является увлекательным хобби. Тем, кто мечтает посвятить плавлению металла свободное время, нужно приготовить для работы такие приспособления:

  • муфельная печка;
  • чистое сырье;
  • жаропрочный тигель;
  • огнеупорная подставка;
  • крюк из стальной проволоки;
  • щипцы для извлечения тигля из печки;
  • средства индивидуальной защиты: костюм, очки, перчатки.

Действия выполняют согласно инструкции:

  1. Надевают специальный костюм.
  2. Исходное сырье измельчают, кладут в тигель.
  3. Помещают в печь, устанавливают нужный температурный режим. Нельзя допускать, чтобы металл закипал.
  4. При достижении заданной температуры открывают дверцу, захватывают тигель щипцами, достают из печи, ставят на огнеупорную подставку.
  5. Стальным крюком к краям емкости сдвигают, образовавшуюся в результате плавления, окисную пленку.
  6. Жидкую медную массу заливают в специальную емкость, охлаждают.
  7. В мощных муфельных печах можно подвергать плавлению красную медь и всевозможные сплавы.

Плавление горелкой

Следует помнить, что при плавлении важна азотная среда. Под легкоплавкие медные сплавы, латунь или некоторые марки бронзы можно использовать обычную газовую горелку. Для этого понадобится:

  • исходное сырье;
  • специальные формы;
  • щипцы для извлечения металла с раскаленной рабочей поверхности;
  • горелка высокого давления, работающая на газе;
  • средства защиты: костюм, очки, перчатки.

Технология плавления сплавов следующая:

  1. Сырье сильно измельчают. Сделать это можно при помощи напильника, превратив материал в опилки.
  2. Кладут в специальную форму, сделанную из термостойкого материала.
  3. Надевают защитный костюм, очки, толстые перчатки.
  4. Зажигают горелку.
  5. Нагревательное устройство направляют свободными движениями по корпусу емкости. Для достижения быстрого результата пламя должно касаться поверхности кончиком синего цвета. В этом месте факела – наибольшая температура.
  6. После того как твердое тело расплавится, тигель захватывают щипцами.
  7. Жидкую массу выливают в нужную форму.

Если нет газовой горелки, можно использовать обыкновенную паяльную лампу.

Выполняя литье цветных сплавов, каждый мастер должен помнить о технике безопасности:

  • В помещении, где ведутся работы, должна быть хорошая вентиляция.
  • Во избежание получения ожогов необходимо работать в средствах индивидуальной защиты.
Читайте также:
Как сделать мачете, используя только ручной инструмент?

Оптимальная температура воздуха, допустимая влажность воздуха, чистота рабочего места, низкая концентрация вредных веществ атмосферы, хорошая освещенность пространства – факторы, помогающие избежать травматизма.

Видео по теме: Проба плавки меди в домашних условиях

Плавление меди в домашних условиях: пошаговая инструкция, видео

Изделия из меди активно используются не только в различных отраслях промышленности, но и в быту. В связи с этим вполне естественно, что у многих умельцев возникает вопрос о том, как расплавить медь и в домашних условиях изготавливать из нее различные изделия методом литья. Знание такой технологии, которая известна человечеству еще с древних времен, позволяет создавать различные предметы не только из меди, но и из ее сплавов – латуни и бронзы.

Плавка меди в самодельной печке

Характеристики меди

Медь является одним из первых металлов, которые человек научился добывать и перерабатывать. Изделия из меди и ее сплавов использовались еще в 3 веке до н.э., о чем свидетельствуют исторические данные и результаты археологических раскопок. Широкому распространению меди во многом способствовало то, что она достаточно легко поддается обработке различными механическими способами. Кроме того, ее можно легко расплавить.

Медь, поверхность которой отличается явно выраженной желтовато-красной окраской, в силу своей мягкости легко поддается обработке методом пластической деформации. Поверхность меди при ее взаимодействии с окружающим воздухом покрывается оксидной пленкой, которая и окрашивает ее в такой красивый цвет.

Марки технической меди и их химический состав

Большое значение имеют и такие характеристики меди, как электро- и теплопроводность, по которым она занимает второе место среди всех металлов, уступая только серебру. Благодаря таким свойствам изделия из нее активно используются в электротехнической промышленности, а также в тех случаях, когда необходимо обеспечить быстрый отвод тепла от нагретого предмета.

Еще одним важным параметром меди, напрямую влияющим на объем энерго- и трудозатрат, расходуемых при производстве изделий из нее, является температура плавления. Для чистой меди температура, при которой металл переходит из твердого состояния в жидкое, составляет 1083°. Если смешать медь с оловом и получить бронзу, то температура плавления такого сплава будет составлять уже 930–1140° в зависимости от содержания в нем основной легирующей добавки. Такой сплав меди, как латунь, который получают путем добавления к основному металлу цинка, обладает еще меньшей температурой плавления, которая находится в интервале 900–1050°.

Электрические свойства меди при температуре 20°

Если вы решили реализовать в домашних условиях такой технологический процесс, как литье меди, важно знать еще один параметр – температуру ее кипения. При 2560° медь начинает буквально кипеть, что хорошо заметно по видео данного процесса. Появлению пузырьков на поверхности жидкого металла и активному газообразованию в нем способствует углерод, выделяющийся из меди в результате ее окисления, происходящего при сильном нагреве.

Если довести мель до кипения, то отливки из нее будут отличаться невысоким качеством, их структура и поверхность будут характеризоваться большим количеством пор, которые снижают не только ее декоративные, но и механические характеристики.

При соблюдении технологии плавки на поверхности медного слитка могут остаться неглубокие поры, легко удаляемые шлифовкой

Пошаговая инструкция по плавлению меди

Плавка меди, если подготовить все необходимое для реализации такого технологического процесса и подойти к его выполнению правильно, позволяет даже в домашних условиях изготавливать медные изделия как декоративного, так и чисто практического назначения.

Для того чтобы расплавить медь, вам потребуются следующие инструменты, оборудование и расходные материалы:

  • муфельная печь (желательно с регулировкой температуры нагрева);
  • тигель, в котором вы будете расплавлять медь (для плавки меди используют тигли, изготовленные из керамики или огнеупорной глины);
  • щипцы, при помощи которых горячий тигель будет извлекаться из печи;
  • крюк (его можно изготовить из обычной стальной проволоки);
  • бытовой пылесос;
  • древесный уголь;
  • форма, в которую будет выполняться литье;
  • газовая горелка и горн.

Меньше всего примесей содержится в электротехнической меди

Расплавить медь как в производственных, так и в домашних условиях можно, следуя нижеприведенному алгоритму.

Медь в измельченном состоянии помещают в тигель. Следует иметь в виду: чем меньше будут кусочки металла, тем быстрее он расплавится. Тигель после его наполнения медью помещают в печь, которую, используя регулятор температуры, необходимо прогреть до требуемого состояния. В дверцах серийных муфельных печей обязательно предусмотрено окошко, через которое можно наблюдать за процессом плавления.

Смотровое окошко позволит контролировать процесс не открывая дверцу лишний раз, тем самым не снижая температуру в печи

После того как вся медь в тигле расплавится, его необходимо извлечь из печи, используя для этого специальные щипцы. На поверхности расплавленной меди обязательно присутствует окисная пленка, которую необходимо сдвинуть к одной из стенок тигля при помощи стального крюка. Расплавленный металл после освобождения его поверхности от окисной пленки следует максимально оперативно и аккуратно залить в предварительно подготовленную форму. Подробности и правила выполнения этой процедуры хорошо демонстрирует видео, которое несложно найти в интернете.

Разливать металл по формам придется очень быстро, если выбранный вами способ нагрева не смог обеспечить нужную температуру

В том случае, если в вашем распоряжении нет муфельной печи, то разогревать тигель с медью можно при помощи газовой горелки, расположив ее вертикально под дном емкости. При этом важно следить за тем, чтобы пламя газовой горелки было равномерно распределено по всей площади дна тигля.

Если в домашних условиях необходимо расплавить легкоплавкие сплавы на основе меди (латунь и некоторые марки бронзы), то в качестве нагревательного устройства можно использовать обычную паяльную лампу, также расположив ее вертикально под дном тигля. При плавке, выполняемой данным и предыдущим способами, поверхность расплавленного металла будет активно взаимодействовать с кислородом, что приведет к интенсивному окислению. Чтобы уменьшить интенсивность окисления, расплавленную медь можно присыпать измельченным древесным углем.

Читайте также:
Монтаж стеллажа-перегородки в комнате

Плавка меди паяльной лампой в самодельной печке

Если в вашей домашней мастерской имеется горн, то его также можно использовать для того, чтобы расплавить медь, латунь или бронзу. В данном случае тигель с измельченным металлом помещается на слой раскаленного древесного угля. Чтобы процесс нагревания и плавления проходил более интенсивно, в зону горения угля можно обеспечить подачу воздуха, для чего подойдет обычный пылесос, работающий не на втягивание, а на выдувание. В том случае, если вы будете использовать пылесос, на его шланг необходимо изготовить металлический наконечник с отверстием для выдувания небольшого диаметра.

Процесс плавки будет ещё эффективнее в газовом горне

Подбирая муфельную печь для выполнения литейных операций с медью и ее сплавами, следует обращать внимание на температурный режим, который может обеспечить такое устройство. В зависимости от типа расплавляемого металла такая печь должна обеспечивать следующие температуры нагревания:

  • медь – 1083°;
  • различные марки бронзы – 930–1140°;
  • латунь – 880–950°.

Возможно, что вы решите сделать печь для плавки самостоятельно, посмотрев видеоролик.

Обычная медь, не содержащая в своем химическом составе никаких легирующих добавок, не отличается хорошей текучестью в расплавленном состоянии, поэтому для изготовления методом литья изделий сложной конфигурации и небольших размеров она мало подходит. Для этих целей лучше всего использовать латунь, причем выбирать сплав, цвет поверхности которого более светлый (это свидетельствует о том, что латунь данной марки отличается меньшей температурой плавления).

Есть еще одна важная рекомендация, которой обязательно следует придерживаться, если вы решили реализовать на практике такой технологический процесс, как литье изделий из бронзовых сплавов. В качестве исходного сырья лучше не использовать изделия, изготовленные из старинной бронзы. В составе такого сплава может содержаться значительное количество мышьяка, который, испаряясь, может создать серьезные проблемы со здоровьем.

Температура и основные условия плавления меди в домашних условиях

Медные изделия отличаются хорошей прочностью, пластичностью, высокой электропроводностью, устойчивостью к коррозии и химически активным веществам. Для изготовления объектов используется медная руда, которая на заводах обогащается и переплавляется в однородные бруски, прутья или слитки. Чтобы изготовить какое-либо медное изделие, материал помещают в термостойкую форму, доводят до температуры плавления, а потом прекращают нагрев, что приводит к застыванию вещества. Но какая температура плавления меди? Можно ли расплавить медные заготовки в домашних условиях — или для этого требуются специальные печи? О каких правилах техники безопасности нужно знать?

Общие сведения

Температурой плавления называют температуру, при которой твердое вещество переходит в жидкость. Медь расплавляется при температуре 1083 градусов, поэтому этот металл относят к категории тугоплавких. При снижении этой температуры металл может вновь принять твердую форму. Плавят медь на заводах, хотя эту процедуру можно провести в домашних условиях. На химическом уровне расплавление возникает за счет деструкции кристаллической решетки, которая формирует твердую структуру вещества. Атомы меди в кристаллической решетке всегда находятся в непрерывном движении.

Однако их взаимное притяжение и отталкивание происходит сбалансировано, поэтому атомы сохраняют исходное положение в течение длительного времени. В случае повышения температуры атомы меди получают дополнительную энергию, что заставляет двигаться их более интенсивно. При небольшом повышении дополнительная энергия «гасится» за счет сбалансированного движения атомов в решетке. Однако при достижении определенной температуры нагрева количество энергии становится избыточным, а кристаллическая решетка начинает разрушаться.

В этот момент и происходит расплавление вещества. Взаимное притяжение атомов частично сохраняется, поэтому вещество принимает жидкую форму. Однако в случае дальнейшего нагрева энергия атомов усиливается еще сильнее, что может привести к окончательному разрыву связи атомов друг с другом. Эту точку перехода называют испарением (жидкость трансформируется в пар). В случае снижения температуры медного пара может переходить обратно в жидкость, а потом — в твердое состояние.

Температура плавления меди

При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:

  1. В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
  2. В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка. Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
  3. При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
  4. При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
  5. При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией). При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.
Читайте также:
Как правильно ухаживать за керамогранитом

Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.

Плавление сплавов на основе меди

На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:

  1. При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
  2. При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами). Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
  3. Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
  4. Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.

Как расплавить медь в домашних условиях?

Обычно медь и сплавы на ее основе плавят в специальных печах, где происходит не только расплавление материала, но и формовка новых деталей. Однако при желании медные изделия можно расплавить и в домашних условиях. Температура плавления меди в домашних условиях будет стандартной — 1083 градусов. Опытные металлурги рекомендуют нагревать вещество с небольшим запасом, чтобы минимизировать теплопотери и не допустить повторной кристаллизации вещества при его охлаждении. Во время домашнего расплавления необходимо соблюдать правила техники безопасности. Ниже мы рассмотрим эти правила, а потом узнаем, как именно нужно проводить домашнюю расплавку медных изделий.

Оборудование и правила техники безопасности

Для расплавления Вам понадобится купить или собрать специальное оборудование. В качестве исходного вещества подойдет чистая медь в слитках или брусках. Также для переплавки можно использовать различные детали и домашнюю утварь, содержащие большое количество меди. Это могут быть декоративные изделия, запчасти авто, очищенные провода и другие. Перед переплавкой проверьте удельное содержание меди (обычно ставится штамп с нужной информацией). Для нагрева объектов понадобится муфельная печь с регулятором температуры.

Для расплавления слитков или изделий понадобится не только печь, но и посуда-тигель, в которую будет помещаться медь. При выборе тигля отдайте свое предпочтение посуде, выполненной из тугоплавкой керамики или огнеупорной глины. Эти материалы не трескаются и не деформируются при большой нагреве. Из керамики или огнеупорной глины Вам также нужно выполнить форму, в которую будет заливаться расплавленная медь. Помимо этого Вам понадобится и ряд вспомогательных элементов — металлургические щипцы и крюк для работы с тиглем, древесный уголь (если Вы используете обычную печь), бытовой пылесос для удаления мусора с металлургической площадки и так далее.

Читайте также:
Как собрать котел длительного горения из газовых баллонов

Также стоит не забывать о правилах техники безопасности:

  • Все работы рекомендуется проводить на улице либо в хорошо проветриваемом большом помещении с нормальным уровнем влажности воздуха. Это может быть гараж, пристройка к дому, мастерские.
  • Для металлургических работ человеку понадобится купить защитную одежду, которая будет защищать его тело от маленьких капель расплавленной меди и термического воздействия высоких температур. Защитная одежда должна покрывать не только туловище, но и руки, голову и ноги.
  • В случае утечки металла из активной зоны нужно выключить печь, чтобы остановить процедуру переплавки. «Сбежавший» металл необходимо потушить, однако учтите — вода для этих целей не подходит. В случае тушения раскаленного металла водой жидкость может начать распадаться на молекулы кислорода и водорода, что может спровоцировать взрыв (молекулярный водород чрезвычайно взрывоопасен). Для тушения расплавленного металла следует использовать асбестовое одеяло либо сухую кальцинированную соду или хлорид натрия.

Алгоритм расплавления медных изделий

Переплавку медных изделий следует делать так:

  1. Возьмите медные изделия или слитки и поместите в тигель. Тигель с расходными материалами поместите в печь. Начните постепенно нагревать материал: сперва выставите температуру 100 градусов, потом — 200 и так далее. Доведите температуру до 1090-1150 градусов (медь плавится при температуре 1083 градусов, однако нужно брать температуру с небольшим запасом).
  2. Когда материал расплавится, достаньте его из печи с помощью металлургических щипцов. На поверхности смеси вы увидите остатки оксидной пленки. С помощью крюка ее нужно сдвинуть к одной из стенок тигля, чтобы она не попала в форму. После удаления пленки аккуратно перелейте расплавленную медь в форму (переливать жидкость нужно тонкой струей, чтобы не допустить утечку или распрыскивания металла).
  3. Выключите муфельную печь, накройте форму огнеупорной крышкой и дождитесь полного остывания формы вместе с расплавленным металлом. При желании Вы можете поставить форму обратно в печь, чтобы минимизировать контакт металла с атмосферным воздухом (однако перед помещением формы убедитесь, что печь выключена). После полного остывания и затвердения металла достаньте переплавленную запчасть из формы.При необходимости выполните финальную полировку или шлифовку.

Заключение

Твердая медь переходит в жидкое состояние при температуре 1083 градуса по Цельсию. Расплавление представляет собой сложный химический процесс, при котором разрушается твердая кристаллическая решетка вещества, что приводит к изменению его формы. Для повышения температуры меди нужно выполнить ее нагрев. На заводах и фабриках для этого используют специальные камеры и печи. Выполнить нагрев вещества можно в домашних условиях — для этого нужно собрать или приобрести мощную печь, которая может нагревать вещества до температуры выше 1100 градусов. Нагревать медь нужно с запасом, что связано с теплопотерями и особенностями процедуры нагрева.

Для переплавки меди в домашних условиях помимо печи нужно подготовить дополнительное оборудование — тигель, металлургические щипцы, крюк, керамическую форму и так далее. Переплавка выполняется просто — с помощью печи медь нагревается до 1083 градусов, а потом она переливается в форму для застывания. Расплавление медных сплавов отличается от расплавления чистой меди. Сплавы характеризуются «плавающей» температурой плавления. Например, латунь плавится при температуре от 880 до 950 градусов в зависимости от концентрации легирующих элементов. Металлурги рекомендуют плавить латуниевый сплав при температуре 950 градусов (точка ликвидуса).

Используемая литература и источники:

  • Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — «Химия», 2000.
  • Максимов М. М., Горнунг М. Б. Очерк о первой меди. — М.: Недра, 1976.
  • Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006.
  • Статья на Википедии

Методы плавки меди в бытовых условиях

Медь хорошо проводит электроток, что позволяет использовать ее в электрике и промышленном оборудовании. Она также очень пластична и отлично обрабатывается шлифовальным и резным оборудованием. Изделия из этого металла получили широкое распространение не только на производстве, но и в быту. Поэтому многие мастера задумываются, как расплавить медь в домашних условиях и сделать из нее что-нибудь полезное.

Основные характеристики металла

В земле данный цветмет залегает в виде руды. Его запасы имеются в России, Казахстане, Южной Америке. Из-за оксидной пленки металл имеет рыжевато-желтый оттенок. К тому же, оксид не только дает интересный цвет, но и усиливает антикоррозийные качества металла. Без оксидной пленки материал окрашен в светло-желтый тон.

Температура плавления чистой меди составляет 1082°C, для сплавов этот показатель колеблется в пределах 930–1100°C. Это не слишком большое значение, которого достаточно, чтобы расплавить медь в домашних условиях.

Характеристики данного металла следующие:

  • медь хорошо отдает тепло, этот показатель составляет 390 Дж/кг;
  • плотность – 8,93 х 103 кг/м²;
  • в процессе кипения металла при t = 2595°C происходит выделение углерода;
  • удельное сопротивление при температуре от 20 до 100°C составляет 1,78*10 Ом/м.

Температура плавления бронзы ниже, чем у меди, из-за имеющегося в его составе олова – 960–1050°C. Сплав данного металла с цинком плавится при температуре от 900°C. Это позволяет плавить его с помощью несложных нагревающих устройств.

График плавления

График плавления металла состоит из пяти ступеней:

  • Первая ступень – при t = 20–100°C материал сохраняет твердое состояние. Следующее нагревание способствует удалению оксидной пленки, и медь изменяет свой цвет.
  • Вторая ступень – при t = 1082°C металл переходит в жидкое состояние, его цвет становится белым. В этот период разрушается кристаллическая решетка материала.
  • Третья ступень – при t = 2595°C цветмет начинает кипеть, выделяя углерод.
  • Четвертая ступень – нагревание прекращается, металл остывает, а пиковая температура постепенно снижается.
  • Пятая ступень – материал возвращается в твердое состояние, и металл остывает окончательно.
Читайте также:
Магнитный браслет: новое приспособление для умельцов

Выбирая лом для вторичной переработки, необходимо учесть, что чистая медь применяется в электротехнических приборах. Бронзовые или латунные сплавы, из которых сделаны многие старинные вещи, зачастую содержат в себе ядовитые вещества. Поэтому работая с ними, следует соблюдать меры предосторожности.

Методы, используемые для плавления меди дома

Плавка меди в домашних условиях возможна несколькими способами. Для этого понадобятся определенные инструменты:

  • сырье;
  • жаропрочный тигель;
  • огнеупорная подставка;
  • проволочный крюк;
  • щипцы для извлечения горячего тигля;
  • средства защиты: очки, костюм, перчатки.

Плавление меди дома и на производстве происходит одинаково. Этого добиваются следующими методами:

  • с помощью муфельной печи;
  • с использованием кислородного пламени;
  • горном;
  • паяльной лампой;
  • плавлением в микроволновой печи.

С помощью муфельной печи

Литье меди с помощью муфельной печи — довольно простой и удобный метод. Медное сырье измельчают на части, чтобы они быстрее расплавились. Готовый материал кладут в графитовый тигель и помещают в разогретую печь. Форма для литья должна иметь большую температуру плавления, чем цветмет.

Когда сырье станет жидким, тигель с помощью щипцов извлекают из печи. Крюком с поверхности металла убирают оксидную пленку. Затем жидкость наливают в заранее подготовленную форму.

Газовая горелка или паяльная лампа

Специальную печь может заменить газовая горелка или паяльная лампа. Ее размещают под дном емкости с металлом и следят, чтобы пламя охватывало днище полностью.

При использовании данного метода материал быстро окисляется, поэтому, чтобы не образовалась толстая оксидная пленка, сверху сырье присыпают частицами древесного угля.

Для плавления легкоплавких сплавов из латуни или бронзы вполне достаточно газовой горелки или паяльной лампы.

Расплавить медь можно с помощью горна. Для этого тигель с измельченным сырьем размещают на раскаленном древесном угле. Чтобы ускорить плавление, используют домашний пылесос, включенный в режиме выдувания. Труба должна иметь металлический зауженный наконечник, так как под воздействием высокой температуры пластик расплавится. Такой метод подойдет для тех, кто регулярно занимается плавлением меди дома.

Чтобы повысить температуру, следует вдувать в горн больше воздуха.

Микроволновая печь

Поможет расплавить медь в домашних условиях мощная микроволновая печь. Для этого убирают вращающуюся тарелку. Чтобы сохранить работоспособность внутренних деталей техники, необходимо поместить тигель в жаропрочный материал, например, обложить огнеупорными кирпичами.

Видео по теме: Плавка меди в микроволновке

Электроника для всех

Блог о электронике

Ликбез по пайке

Мой любимый припой.
Тонкая проволочка для точных паек.

И вот ты решил окунуться в электронику с головой, затарился паяльником, купил припой и… А что дальше? Если худо бедно, то как надо паять представляют все, а вот тонкости технологии известны далеко не многим и приходят с опытом. Чтож, ускорю этот пагубный процесс и расскажу тебе парочку хитростей.

Итак, про хороший паяльник для мелкого монтажа ты наверное уже читал, вот от него и будем плясать. Кроме паяльника тебе потребуется припой и флюс. О них поподробней.

Припой.
Это специальный сплав, который плавится при температуре порядка 200 градусов. Самый распространенный это 60/40 Alloy, он же ПОС-61. Сплав в котором 60% олова и 40% свинца. Температура плавления у него 183-230 градусов. Обычно продается в виде проволоки, намотанной на катушки.
Для мелкого монтажа лучше брать тот, где диаметр проволочки поменьше — легче дозировать. У меня две катушки, одна с проволокой припоя 0.3 мм, вторая 0.6 мм. Ну еще есть с полутора миллиметровой, но я ей почти не пользуюсь. Только если массово паяю массивные детали, где надо много припоя.
Покупать припой лучше импортный, к сожалению российский продукт сплошь и рядом отстой. Может и есть качественный, но обычно мне попадался низкопробный шлак. Катушка припоя, как на картинке, должна стоить от 150-200 рублей, дороже можно, дешевле не желательно. Лучше один раз потратиться, зато потом иметь красивую и качественную пайку и не париться. А катушки обычно хватает года на полтора-два это минимум.
Ещё полезно купить себе немного сплава Розе. Это тоже вроде припоя, но температура плавления у него совсем смешная — где то в районе 90-100 градусов. Этот сплав иногда полезен при демонтаже, но об этом позже будет отдельная статья.

Канифоль — классика жанра

Самый простой и народный флюс. Это обычная очищенная сосновая смола. При пайке сначала берут на жало немного припоя, потом тычут в канифоль, чтобы набрать на жало смолы, а затем быстро, пока смола не испарилась, паяют. Способ не сильно удобный, поэтому часто делают по другому. Берут обычный этиловый (медицинский) спирт и растовряют в нем толченую канифоль пока она растворяется. После этот раствор наносят кисточной на спаиваемые детали и паяют. Активность канифоли не высока, поэтому иной раз ничего не получается — детали не не лудятся, но зато у канифоли есть одно огромное достоинство, которое порой перекрывает все ее недостатки. Канифоль абсолютно пассивна. То есть ее не нужно удалять с места пайки, так как она не окисляет и не восстанавливает металлы, являясь при этом отличным диэлектриком. Именно по этому самые ответственные пайки я стараюсь делать спирто-канифольным флюсом.

ЛТИ-120
Глицерин-гидразин
Канифоль-гель. Супер вещь
Ф-34А — химическое оружие массового поражения.
Палитра флюсов :)

Один из моих любимых флюсов. Представляет из себя рыжую жидкость, имеет в своем составе канифоль и еще ряд присадок. Паять им также как и обычным спирто-канифольным флюсом — намазать кисточкой на детали и паять. Но есть одна хитрость. В изначальном варианте ЛТИ-120 жидкий зараза, мажется тонким слоем и моментально высыхает, в общем пользоваться им не очень удобно. Я придумал как это побороть.
Я сделал себе палитру флюсов — наклеил на мелкую компашку кучу крышечек от флакончиков, налил в них разных флюсов и наклеил это дело на катушку с припоем. Получилось очень удобно и компактно. Так вот, налив ЛТИ-120 в крышечку я даю ему постоять пару дней. За это время он подсохнет и загустеет до состояния жидкого мёда. Вот его уже удобно намазывать острой зубочисткой точно туда куда надо. А если загустеет сверх меры, то либо туда немного спирту капну, либо подолью еще немного свежего флюса и размешаю. Производитель утверждает, что ЛТИ-120 смывать не нужно. В принципе, вроде бы так оно и есть, он не активный. Но что то меня смущают присадки которые в нем, поэтому я его смываю всегда. Смывается он широкой кисточкой, смоченной в спирте. Или просто щеткой под струей воды из под крана. Нет ничего страшного в том, чтобы отмывать готовую плату водой, главное хорошо высушить потом.

Читайте также:
Какие доски использовать для бани?

Канифоль-гель
Отличная штука. Не так давно появился в радиомагазинах и уже заслужил мою любовь и уважение. Представляет из себя густую коричневую пасту на основе канифоли, продается в шприцах. Отлично намазывается непосредственно туда где надо, не оставляет нагара на паяльнике, как ЛТИ-120. Легко смывается водой или спиртом, в общем, рулез!

Глицерин-гидразин.
Убойный активный флюс, который легко смывается водой, не оставляет грязных липких следов и окислов. Но его надо смывать. Тщательно смывать. Иначе за пару лет он может разъесть дорожки платы или его остатки станут токопроводными и возникнут жуткие утечки по поверхности платы между дорожками, что крайне негативно скажется на работе схемы. Еще я не уверен в безопасности его паров. На раз два попользоваться можно, но вот постоянно его юзать мне как то не улыбается. Но в целом это офигенный флюс, паять им одно удовольствие.

Глицерин-Салициловый флюс .
Он же ФСГЛ. Честно говоря я понятия не имею откуда эта хрень вообще берется. У меня банка этого флюса имеется с детства (собственно поэтому канифолью то я практически не паял никогда) — батя стырил с оборонного предприятия. В свободной продаже не видел ни разу. Паяет также ядрёно как и Глицерин-гидразин, но не имеет в своем составе сомнительных с точки зрения токсичности примесей. Там 90% глицерина, 5% салициловой кислоты, 5% воды. Купить чтоль в аптеке салицилки и самому сбодяжить? Уж больно чумовой рецепт. Один недостаток — нужно смывать, он активный. Но смывается водой влегкую.

Ф-34А
Адская кислотная смесь. При пайке имеет жуткий едкий выхлоп, которым я потравил половину нашей лаборатории. Паять этой гадостью можно только в противогазе и с мощной вытяжкой, но зато это дерьмище паяет все, то что другим флюсам даже в страшном сне не снилось. Эта жижа залуживает влет — ржавчину, окислы, сталь, напыления, даже алюминий можно паять. Так что если тебе надо будет припаяться к ржавому гвоздю, то капни этой херни, задережи дыхание и ЛУДИ!

Импортные безотмывочные флюсы.
Честно говоря ими я не пользовался. Говорят они круты, но имхо паять ими просто так это не рационально — слишком уж дорогие они, да и у нас в городе не продают, а заказывать мне западло. Скорей они для профессионального применения, вроде ремонта сотовых или пайки BGA корпусов (это когда ножки в виде массива шариков под корпусом микросхемы). Если интересно, то поищите инфу на форумах ремонтников сотовых, они про это дело знают все.

Голландский флюс на основе конопли
Понятия не имею кто его делает и где его продают, но я точно знаю что он есть! Особенно я в этом убедился после ковыряния в схемах продукции фирмы где я раньше работал. Разработчики явно паяют им. Так как таких укуренных схемотехнических решений я еще не видел.

Паяльник в руки и вперед.
Про флюсы я тебе рассказал, теперь, собственно, о процессе пайки.
Дело это не хитрое. Для начала желательно облудить детали. Смачиваешь их флюсом, подцепляешь жалом паяльника чуть чуть припоя и размазываешь по поверхности. Торопиться не надо, детали должны покрыться ровным тонким блестящим слоем. Выводы микросхем и радиодеталей лудить не нужно — они уже на заводе облужены.

Припой должен быть жидким, как вода. Если он комковатый, с ярко выраженной зернистостью и матовый, то тут причины две — неправильная температура паяльника , либо припой низкопробное говно . Если паяльник слишком холодный то припой будет на грани твердого и жидкого состояния, будет вязким и не будет смачивать. Если же паяльник перегрет, то припой будет моментально покрываться серой пленкой окисла и тоже будет отвратительно лудить. Идеальная температура паяльника при пайке припоем ПОС-40 ( 60/40 Alloy ), на мой взгляд, это порядка 240-300 градусов. У СТ-96 достаточно выставить регулятор на 2/3 в сторону увеличения.

Если паяешь печатную плату, то дорожки тоже надо залудить. Но делать это надо осторожно. Текстолит, что продается на просторах Родины зачастую тоже оказывается редкостным говном и при нагреве фольга от него отваливается в момент. Поэтому долго греть плату нельзя — отвалятся дорожки. Обычно я просто смазываю хорошенько все дорожки флюсом ЛТИ-120 и провожу быстренько по каждой плоским жалом паяльника с капелькой припоя. В Результате имею идеально залуженные дорожки, с практически зеркальной поверхностью.

Есть народный способ для быстрого лужения больших плат:

Оплетка для удаления припоя
Мое лудило

Берется оплетка для удаления припоя, это такая медная мочалка, продается в мотках по 30 рублей метр. Если не найдешь, то можешь выковырять из толстого телевизионного коаксиального кабеля экранирующую оплетку — та же херня только возни больше. Плата как следует смазывается флюсом, оплетка как следует пропитывается припоем и тоже поливается флюсом. Дальше эта хрень возякается паяльником по поверхности платы. Чтобы ворсинки оплетки не пристывали к дорожкам, лучше взять паяльник побольше и помассивней.

Читайте также:
Круглые аквариумы в интерьере

Я так вообще усовершенствовал способ.
Взял старый мощный паяльник на 60Вт, обмотал у него жало этой оплеткой, пропитал её сплавом Розе и теперь лужу платы в одно движение. Почему именно Розе? А им лудить проще, паяльник когда касается платы резко остывает, т.к. отдает тепло. Если оплетка смочена обычным припоем, то она тут же приваривается отдельными ворсинками к плате, а сплав Розе легкоплавный и не прилипает.

Пайка транзисторов, диодов и микросхем.
Тут я бы хотел заострить внимание особо. Дело в том, что полупроводники от слишком высокой температуры разрушаются , поэтому есть риск пожечь микросхему перегревом. Чтобы этого не произошло желательно выставить паяльник на 230 градусов или около того . Это вполне терпимая температура, которую микросхема выдерживает довольно долго. Можно паять и не торопиться. У обычных, не регулируемых паяльников, температура жала порядка 350-400 градусов , поэтому паять надо быстро, в одно касание. Не дольше секунды на каждой ножке и делать хотя бы 10-15 секундный перерыв, прежде чем приступать к пайке другой ножки. Также можно придерживать ножку металлическим пинцетом — он послужит теплоотводом.

Пайка проводов
Лучше перед пайкой концы облуживать отдельно, а если провод припаивается к печатной плате, то очень желательно просверлить в плате дырку, завести его с другой стороны и только тогда паять. В таком случае риск оторвать дрожку при рывке за провод сводится к нулю.

Пайка проволокой припоя.
Так обычно паяют микросхемы. Прихватывают ее по диагонали за крайние ножки, смазывают все флюсом, а потом, держа одной рукой паяльник, а другой тонкую проволочку припоя, быстро запаивают все ножки.

Пайка проводов в лаковой изоляции
Всякий обмоточный провод, вроде тех которым намотан трансформатор, покрыт тонким слоем лака. Чтобы припаяться к нему этот слой лака нужно содрать. Как это сделать? Если провод толстый, то можно пожечь его немного огнем зажигалки, лак сгорит, а нагар можно счистить грубой картонкой. Если же провод тонкий, то тут либо аккуратно поскоблить его скальпелем, держа скальпель строго перпендикулярно проводу, либо взять таблетку аспирина и как следует прижать и пошоркать горячим жалом паяльника по проводу на аспиринке. При нагреве из аспирина выделится вещество которое сожрет лаковую изоляцию и очистит провод. Правда вонять будет сильно :)

Удобная держалка.

Рекомендую обзавестись вот таким вот захватом. Чертовски удобная штука, позволяет придерживать какого-нибудь Ктулху при пайке, концы не болтаются из стороны в сторону. Кстати, бойтесь подпружиненных проводников! При пайке он может соскочить и метнуть вам в лицо капельку припоя, сколько раз мне в лицо такое прилетало уже и не припомню, а ведь могло и в глаз! Так что соблюдайте Технику безопасности!

Губка
Жало паяльника постепенно загаживается и покрывается нагаром. Это нормально, обычно виной ему флюс, тот же ЛТИ-120 горит дай боже. Для очистки паяльника можно применять специальную губку. Такая желтая фигня, идет в комплекте к подставкам для паяльника. Ее надо смочить водой и отжать, оставляя влажной. Кстати, губка постоянно высыхает, чтобы ее каждый раз не мочить ее можно пропитать обычным медицинским глицерином. Тогда она не будет высыхать вообще! Удобно блин! Если нет губки, то возьми хлопчатобумажну тряпочку, положи в железный поддончик и также пропитай водой или глицерином. У нас монтажницы держали на столе обычное вафельное полотенце и об него вытирали паяльник.

Кстати, о технике безопасности.

  • Во первых расположите все так, чтобы было удобно.
  • Следите за шнурами питания. Паяльник очень любит пережигать свой собственный провод . Прям мания у него. А это черевато в лучшем случае ремонтом провода, в худшем коротким замыканием и пожаром.
  • Не оставляйте паяльник включенным даже на короткое время. Правило « Ушел — выключил » должно выполняться железно.
  • Правило второе — паяльник должен быть либо в руке, либо на своей надежной подставке . И ни как иначе! Класть его на стол или на первую попвшуюся фиговину на столе ни в коем случае нельзя. Шнур его утащит за собой в момент.
  • Не забывайте про вытяжку и вентиляцию . Если паяешь, то как минимум открой форточку, проветривай помещение, а лучше поставь на стол вентилятор (хотя бы 80мм от компа) или вытяжку.

Лучше один раз увидеть, чем сто раз прочитать:
Нет проблем! К твоим услугам куча роликов с You Tube по запросу «solder». Увидишь как это делают профессионалы. Смотри и учись!

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

Пайка для начинающих

Мои отношения с радио- и микроэлектроникой можно описать прекрасным анекдотом про Льва Толстого, который любил играть на балалайке, но не умел. Порой пишет очередную главу Войны и Мира, а сам думает «тренди-бренди тренди-бренди. ». После курсов электротехники и микроэлектроники в любимом МАИ, плюс бесконечные объяснения брата, которые я забываю практически сразу, в принципе, удается собирать несложные схемы и даже придумывать свои, благо сейчас, если неохота возиться с аналоговыми сигналами, усилениями, наводками и т.д. можно подыскать готовую микро-сборку и остаться в более-менее понятном мире цифровой микроэлектроники.

К делу. Сегодня речь пойдет о пайке. Знаю, что многих новичков, желающих поиграться с микроконтроллерами, это отпугивает. Но, во-первых, можно воспользоваться макетными платами, где просто втыкаешь детали в панель, без даже намека на пайку, как в конструкторе.

Так можно собрать весьма кучерявое устройство.

Но иногда хочется таки сделать законченное устройство. Опять-таки, не обязательно «травить» плату. Если деталей немного, то можно использовать монтажную плату без дорожек (я использовал такую для загрузчика GMC-4).

Но вот паять таки придется. Вопрос как? Особенно, если вы этого никогда раньше не делали. Я, возможно, открою Америку, но буквально несколько дней назад я сам для себя открыл волшебный мир пайки без особого геморроя.

До сего времени мое понимание сути процесса ручной пайки было следующим. Берется паяльник (желательно с жалом не в форме шила, а с небольшим уплощением, типа лопаточки), припой и канифоль. Для запайки пятачка, ты берешь капельку припоя на паяльник, макаешь паяльник в канифоль, происходит «пшшшшш», и пока он идет, ты быстро-быстро касаешься паяльником места пайки (деталь, конечно, должна быть уже вставлена), и после нескольких мгновений разогрева припой должен каким-то волшебным образом переходить на место пайки.

Увы, у меня такой метод работал очень плохо, практически не работал. Детали нагревались, но припой никуда с паяльника не переходил. Очевидно, что проблема была в катализаторе, то есть канифоли. Того «пшшшшш», что я делал, опуская конец паяльник в канифоль, явно не хватало, чтобы «запустить» процесс пайки. Пока ты тащишь паяльник к месту пайки, вся почти канифоль успевает сгореть. Именно поэтому, кстати, мне была совершенно непонятна природа припоя, внутри которого уже содержится флюс (какой-то вид катализатора, типа канифоли). Все равно, в момент набирания припоя на паяльник весь флюс успевает сгореть.

Экспериментальным путем я нашел несколько путей улучшить процесс:

  • Лудить места пайки заранее. Реально, при пайке деликатных вещей, типа
    микросхем это крайне непрактично. Тем более, обычно, их ножки уже
    луженые.
  • Крошить канифоль прямо на место пайки. Аккуратно кладешь кристаллик канифоли прямо на место пайки, и тогда «пшшшшш» происходит прямо там, что позволяет припою нормально переходить с паяльника. Увы, после такой пайки плата вся обгажена черными заплесами горелой канифоли. Хотя она и изолятор, но порой не видно дефектов пайки.Поэтому плату надо мыть, а это отдельный геморрой. Да и само выкрашивание делает пайку крайне медленной. Так я паял Maximite.
  • Использовать жидкой флюс. По аналогии с выкрашиваем канифоли, можно аккуратно палочкой класть капельку жидкого флюса (обычно, он гораздо «сильнее» канифоли), и тогда будет активный «пшшшшш», и пайка произойдет. Увы, тут тоже есть проблемы. Не все жидкие флюсы являются изоляторами, и плату тоже надо мыть, например, ацетоном. А те, что являются изоляторами все равно остаются на плате, растекаются и могут мешать последующей внешней «прозвонке». Выход — мыть.

Итак, мы почти уже у цели. Я так подробно все пишу, так как, честно, для меня это было прорыв. Как я случайно открыл, все, что нужно для пайки несложных компонент — это паяльник, самый обычный с жалом в виде шила:

и припой c флюсом внутри:

Все дело в процессе. Делать надо так:

  • Деталь вставляется в плату и должна быть закреплена (у вас не будет второй руки, чтобы держать).
  • В одну руку берется паяльник, в другую — проволочка припоя (удобно, если он в специальном диспенсере, как на картинке).
  • Припой на паяльник брать НЕ НАДО.
  • Касаетесь кончиком паяльника места пайки и греете его. Обычно, это секунды 3-4.
  • Затем, не убирая паяльника, второй рукой касаетесь кончиком проволочки припоя с флюсом места пайки. В реальности, в этом месте соприкасаются сразу все три части: элемент пайки и его отверстие на плате, паяльник и припой. Через секунду происходит «пшшшшш», кончик проволочки припоя плавится (и из него вытекает немного флюса) и необходимое его количество переходит на место пайки. После секунды можно убирать паяльник с припоем и подуть.

Ключевой момент тут, как вы уже поняли, это подача припоя и флюса прямо на место пайки. А «встроенный» в припой флюс дает его необходимое минимальное количество, сводя засирание платы к минимуму.

Ясное дело, что время ожидания на каждой фазе требует хотя бы минимальной практики, но не более того. Уверен, что любой новичок по такой методике сам запаяет Maximite за час.

Напомню основные признаки хорошей пайки:

  • Много припоя еще не значит качественного контакта. Капелька припоя на месте контакта должна закрывать его со всех сторон, не имея рытвин, но не быть чрезмерно огромной бульбой.
  • По цвету пайка должна быть ближе к блестящей, а не к матовой.
  • Если плата двухсторонняя, и отверстия неметаллизированные, надо пропаять по указанной технологии с обоих сторон.

Стоит заметить, что все выше сказанное относится к пайке элементов, которые вставляются в отверстия на плате. Для пайки планарных деталей процесс немного более сложен, но реален. Планарные элементы занимают меньше места, но требуют более точного расположения «пятачков» для них.

Планарные элементы (конечно, не самые маленькие) даже проще для пайки в некотором роде, хотя для самодельных устройств уже придется травить плату, так как на макетной плате особого удобства от использования планарных элементов не будет.

Итак, небольшой, почти теоретический бонус про пайку планарных элементов. Это могут быть микросхемы, транзисторы, резисторы, емкости и т.д. Повторюсь, в домашних условиях есть объективные ограничения на размер элементов, которых можно запаять обычным паяльником. Ниже я приведу список того, что лично я паял обычным паяльником-шилом на 220В.

Для пайки планарного элемента уже не получится использовать припой на ходу, так как его может «сойти» слишком много, «залив» сразу несколько ножек. Поэтому надо предварительно в некотором роде залудить пятачки, куда планируется поставить компонент. Тут, увы, уже не обойтись без жидкого флюса (по крайне мене у меня не получилось).

Капаете немного жидкого флюса на пятачек (или пятачки), берете на паяльник совсем немного припоя (можно без флюса). Для планарных элементов припоя вообще надо очень мало. Затем легонько касаетесь концом паяльника каждого пятачка. На него должно сойти немного припоя. Больше чем надо, каждый пятачек «не возьмет».

Берете элемент пинцетом. Во-первых, так удобнее, во-вторых пинцет будет отводить тепло, что очень важно для планарных элементов. Пристраиваете элемент на место пайки, держа его пинцетом. Если это микросхема, то надо держать за ту ножку, которую паяете. Для микросхем теплоотвод особенно важен, поэтому можно использовать два пинцета. Одним держишь деталь, а второй прикрепляешь к паяемой ножке (есть такие пинцеты с зажимом, которые не надо держать руками). Второй рукой снова наносишь каплю жидкого флюса на место пайки (возможно немного попадет на микросхему), этой же рукой берешь паяльник и на секунду касаешься места пайки. Так как припой и флюс там уже есть, то паяемая ножка «погрузится» в припой, нанесенный на стадии лужения. Далее процедура повторяется для всех ног. Если надо, можно подкапывать жидкого флюса.

Когда будете покупать жидкий флюс, купите и жидкость для мытья плат. Увы, при жидком флюсе лучше плату помыть после пайки.

Сразу скажу, я ни разу не профессионал, и даже не продвинутый любитель в пайке. Все это я проделывал обычным паяльником. Профи имеют свои методы и оборудование.

Конечно, пайка планарного элемента требует куда большей сноровки. Но все равно вполне реально в домашних условиях. А если не паять микросхемы, а только простейшие элементы, то все еще упрощается. Микросхемы можно покупать уже впаянные в колодки или в виде готовых сборок.

Вот картинки того, что я лично успешно паял после небольшой тренировки.

Это самый простой вид корпусов. Такие можно ставить в колодки, которые по сложности пайки такие же. Эти элементарно паяются по первой инструкции.

Следующие два уже сложнее. Тут уже надо паять по второй инструкции с аккуратным теплоотводом и жидким флюсом.

Элементарные планарные компоненты, типа резисторов ниже, весьма просто паяются:

Но есть, конечно, предел. Вот это добро уже за пределами моих способностей.



Под занавес, пару дешевых, но очень полезных вещей, которые стоит купить в дополнение к паяльнику, припою, пинцету и кусачкам:

    Отсос. Изобретателю этого устройства стоит поставить памятник. Налепили много припоя или запаяли не туда? Сам припой, увы, обратно на паяльник не запрыгнет. А вот отсосом убирается элементарно. Одной рукой разогреваете паяльником место «отпайки». Второй держите рядом взведенный отсос. Как «оттает», нажимаете на кнопку, и припой прекрасным образом спрыгивает в отсос.


Очки. Когда имеешь дело с ножками и проводами, может случиться, что разогретая ножка отпружинит, и припой с нее куда-то полетит, возможно, в глаз. С этим лучше не шутить.

Успехов в пайке! Запах канифоли — это круто!

Чем и как паять микросхемы

Современные радиоэлектронные устройства невозможно представить без микросхем – сложных деталей, в которые, по сути, интегрированы десятки, а то и сотни простых, элементарных компонентов.

Микросхемы позволяют сделать устройства легкими и компактными. Рассчитываться за это приходится удобством и простотой монтажа и достаточно высокой ценой деталей. Цена микросхемы не играет важной роли в формировании общей цены изделия, в котором она применяется. Если же испортить такую деталь при монтаже, при замене на новую стоимость может существенно увеличиться. Несложно припаять толстый провод, большой резистор или конденсатор, для этого достаточно владения начальными навыками в пайке. Микросхему же надо припаивать совсем иным способом.

Чтобы не произошло досадных недоразумений, при пайке микросхем необходимо пользоваться определенными инструментами и соблюдать некоторые правила, основанные на многочисленном опыте и знаниях.

Оборудование для пайки

Для пайки микросхем можно использовать различное паяльное оборудование, начиная от простейшего – паяльника, и заканчивая сложными устройствами и паяльными станциями с использованием инфракрасного излучения.

Паяльник для пайки микросхем должен быть маломощным, желательно рассчитанным на напряжение питания 12 В. Жало такого паяльника должно быть остро заточено под конус и хорошо облужено.

Для выпаивания микросхем может быть применен вакуумный оловоотсос – инструмент, позволяющий поочередно очищать ножки на плате от припоя. Этот инструмент представляет собой подобие шприца, в котором поршень подпружинен вверх. Перед началом работ он вдавливается в корпус и фиксируется, а когда необходимо, освобождается нажатием кнопки и под действием пружины поднимается, собирая припой с контакта.

Более совершенным оборудованием считается термовоздушная станция, которая позволяет осуществлять и демонтаж микросхем и пайку горячим воздухом. Такая станция имеет в своем арсенале фен с регулируемой температурой потока воздуха.

Очень востребован при пайке микросхем такой элемент оборудования, как термостол. Он подогревает плату снизу, в то время, как сверху производятся действия по монтажу или демонтажу. Опционально термостол может быть оснащен и верхним подогревом.

В промышленных масштабах пайка микросхем осуществляется специальными автоматами, использующими ИК-излучение. При этом производится предварительный разогрев схемы, непосредственно пайка и плавное ступенчатое охлаждение контактов ножек.

В домашних условиях

Пайка микросхем в домашних условиях может потребоваться для ремонта сложной бытовой техники, материнских плат компьютеров.

Как правило, чтобы припаять ножки микросхемы, используют паяльник или паяльный фен.

Работа паяльником осуществляется с помощью обычного припоя или паяльной пасты.

В последнее время стал чаще применяться бессвинцовый припой для пайки с более высокой температурой плавления. Это необходимо для уменьшения вредного действия свинца на организм.

Какие приспособления потребуются

Для пайки микросхем, кроме самого паяльного оборудования, потребуются еще некоторые приспособления.

Если микросхема новая и выполнена в BGA-корпусе, то припой уже нанесен на ножки в виде маленьких шариков. Отсюда и название – Ball Grid Array, что означает массив шариков. Такие корпуса предназначены для поверхностного монтажа. Это означает, что деталь устанавливается на плату, и каждая ножка быстрым точным действием припаивается к контактным пятачкам.

Если же микросхема уже использовалась в другом устройстве и используется как запчасти, бывшие в употреблении, необходимо выполнить реболлинг. Реболлингом называется процесс восстановления шариков припоя на ножках. Иногда он применяется и в случае отвала – потери контакта ножек с контактными пятачками.

Для осуществления реболлинга понадобится трафарет – пластина из тугоплавкого материала с отверстиями, расположенными в соответствии с расположением выводов микросхемы. Существуют готовые универсальные трафареты под несколько самых распространенных типов микросхем.

Паяльная паста и флюс

Для правильной пайки микросхем необходимо соблюдать определенные условия. Если работа осуществляется паяльником, то жало его должно быть хорошо облужено.

Для этого используется флюс – вещество, растворяющее оксидную пленку и защищающее жало от окисления до покрытия припоем во время пайки микросхемы.

Наиболее распространенный флюс – сосновая канифоль в твердом, кристаллическом виде. Но, чтобы припаять микросхему, такой флюс не годится. Ножки ее и контактные пятачки обрабатывают жидким флюсом. Его можно сделать самостоятельно, растворив канифоль в спирте или кислоте, а можно купить готовый.

Припой в этом случае удобнее использовать в виде присадочной проволоки. Иногда он может содержать внутри флюс из порошковой канифоли. Можно приобрести готовый паяльный набор для пайки микросхем, включающий в свой состав канифоль, жидкий флюс с кисточкой, несколько видов припоя.

При осуществлении реболлинга используется паяльная паста, представляющая собой основу из вязкого материала, в которой содержатся мельчайшие шарики припоя и флюса. Такая паста наносится тонким слоем на ножки микросхемы с обратной стороны трафарета. После этого паста разогревается феном или инфракрасным паяльником до расплавления припоя и канифоли. После застывания, они образуют шарики на ножках микросхемы.

Порядок проведения работ

Перед началом работ необходимо подготовить все инструменты, материалы и приспособления, чтобы они были под рукой.

При монтаже или демонтаже плату можно расположить на термостоле. Если для демонтажа используется паяльный фен, то для исключения его воздействия на другие компоненты, нужно их изолировать. Сделать это можно установкой пластин из тугоплавкого материала, например, полосок, нарезанных из старых плат, пришедших в негодность.

При использовании для демонтажа оловоотсоса процесс происходит аккуратнее, но дольше. Оловоотсос «заряжается» при очистке каждой ножки. По мере заполнения кусками застывшего припоя, его нужно очищать.

Есть несколько правил пайки, которые следует обязательно исполнять:

  • паять микросхемы на плате надо быстро, чтобы не перегреть чувствительную деталь;
  • можно каждую ножку во время пайки придерживать пинцетом, чтобы обеспечить дополнительный теплоотвод от корпуса;
  • при монтаже с помощью фена или инфракрасного паяльника, необходимо следить за температурой детали, чтобы она не поднималась выше 240-280 °C.

Радиоэлектронные детали очень чувствительны к статическому электричеству. Поэтому при сборке лучше использовать антистатический коврик, который подкладывается под плату.

Зачем сушить чипы

Чипами называют микросхемы, заключенные в BGA-корпусах. Название, видимо, пошло еще от аббревиатуры, означавшей «Числовой Интегральный Процессор».

По опыту использования у профессионалов существует устойчивое мнение, что при хранении, транспортировке, пересылке, чипы впитывают в себя влагу и во время пайки она, увеличиваясь в объеме, разрушает деталь.

Действие влаги на чип можно увидеть, если нагреть последний. На поверхности его будут образовываться вздутия и пузыри еще задолго до того, как температура поднимется до значения, достаточного для расплавления припоя. Можно только представить, что же происходит внутри детали.

Чтобы избежать нежелательных последствий наличия влаги в корпусе чипа, при монтаже плат осуществляется сушка чипов перед пайкой. Эта процедура помогает удалить влагу из корпуса.

Правила сушки

Сушку чипов необходимо производить, соблюдая температурный режим и продолжительность. Новые чипы, которые были приобретены в магазине, со склада, присланы по почте, рекомендуется сушить не менее 24 часов при температуре 125 °C. Для этого можно использовать специальные сушильные печи. Можно высушить чип, расположив его на термостоле.

Температуру сушки необходимо контролировать, чтобы не допустить перегрева и выхода детали из строя.

Если чипы были высушены и хранились до монтажа в обычных комнатных условиях, достаточно просушить их в течение 8-10 часов.

Учитывая стоимость деталей, очевидно, лучше провести сушку, чтобы с уверенностью приступать к монтажу, чем пытаться паять непросушенный чип. Неприятности могут обернуться не только денежными тратами, а еще и потерянным временем.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: