Класс бетонной поверхности монолитных конструкций

Требования к качеству бетонных поверхностей

Содержание статьи:

  1. Класс бетонной поверхности;
  2. Что можно и чего нельзя;
  3. Назначение бетонной поверхности в зависимости от класса;
  4. Что влияет на качество бетонной поверхности.

Благодаря постоянному развитию бетонных технологий современные архитекторы научились создавать не только технологически сложные, но красивые проекты построек из бетона.

Архитектурная выразительность современных бетонных конструкций обеспечивается высоким качеством и однородностью их лицевой поверхности, или, наоборот, приданием ей определенной декоративной текстуры.

Какие классы бетонных поверхностей бывают?

Для оценки качества поверхности и внешнего вида монолитных железобетонных и бетонных конструкций сводом правил СП 70.13330.2012 (Приложение Ц) предусмотрены 4 класса (не путать с категориями бетонной поверхности изделия):

  • класс А3;
  • класс А4;
  • класс А6;
  • класс А7.

Класс бетонной поверхности определяется по предельным допускам прямолинейности и местных неровностей (см. таблицу ниже). Под допуском прямолинейности понимают наибольшее допускаемое отклонение от прямолинейности (см. рисунок).

Допуски прямолинейности для измеряемых расстояний, мм

Местные неровности -0,1м

Не допускается обнажение арматуры

Указанные предельные допуски применяют при условии их соответствия по толщине защитного слоя бетона и по размерам сечений элементов.

Класс бетонной поверхности определяется для:

  • фундаментов;
  • стен;
  • перекрытий;
  • колонн;
  • иных конструкций с прямолинейными поверхностями.

Класс и качество бетонной поверхности должны указываться в проектной документации. В случаях, когда класс неоговорен, он принимается равным А6 или А7 в зависимости от назначения (о назначении бетонных поверхностей разного класса написано ниже).

Также в проектной документации указываются дополнительные требования к бетонным поверхностям, эксплуатируемым в условиях постоянного воздействия движущейся воды или других агрессивных воздействий.

Что можно и чего нельзя?

Важно знать, что можно допускать на бетонной поверхности, а чего нельзя.

Не допускаются неровности свыше допусков прямолинейности

На бетонных поверхностях НЕ ДОПУСКАЮТСЯ:

  • участки неуплотненного бетона;
  • пятна ржавчины и жировые пятна (кроме класса А7);
  • обнажение арматуры (кроме рабочих выпусков арматуры, монтажных крепежных элементов опалубки);
  • обнажение стальных закладных изделий (без антикоррозионной обработки);
  • трещины, шириной раскрытия, указанные в проекте (рекомендуемое значение: 0,1 мм – для конструкций незащищенных от атмосферных осадков; 0,2 мм – в помещении);
  • раковины (сколы бетона ребер) для:
  1. класса А3 – диаметром более 4 мм / глубиной более 2 мм (глубиной 5 мм /суммарной длиной более 50 мм на 1 м ребра);
  2. класса А4 – от 10 мм/ от 2 мм (5 мм / от 50 мм на 1 м ребра);
  3. класса А6 – от 15 мм/ от 5 мм (10 мм / от 100 мм на 1 м ребра);
  4. класса А7 — от 20 мм (от 20 мм/длина – не регламентируется);
  • местные неровности (выступы, наплывы или впадины), превышающие допуски для соответствующих классов на измеряемом расстоянии, равном 0,1 м. Для поверхностей класса А3 не допускаются выступы и наплывы.

Допускаются отпечатки щитов опалубки на бетонной поверхности

На бетонных поверхностях ДОПУСКАЮТСЯ:

  • для конструкций стен — отверстия под тяжи (с оставляемыми в них пластмассовыми защитными трубками тяжа); отверстия под анкеры;
  • отпечатки щитов/элементов опалубки;
  • обнажение фиксаторов арматуры;
  • для нижней поверхности перекрытий — отпечатки щитов/элементов опалубки, элементы электрической разводки, крепления пластмассовых конструкций и т. п.

Для обеспечения соответствия требованиям для бетонных поверхностей классов А3 и А4 местные выступы шлифуют, а местные впадины затирают.

Назначение бетонной поверхности в зависимости от класса

В таблице ниже указано основное назначение бетонных поверхностей разного качества:

Лицевая поверхность колонн, стен и нижняя поверхность
перекрытий, к которым предъявляются повышенные требования к внешнему виду.

Поверхность под улучшенную покраску без шпатлевки.

Лицевая поверхность колонн, стен и нижняя поверхность
перекрытий, подготавливаемых под отделку (облицовка, оклейка обоями).

Лицевая поверхность колонн, стен, нижняя поверхность
перекрытий, к которым не предъявляются специальные требования к качеству
поверхности.

Поверхность под простую окраску или без отделки.

Скрываемые и оштукатуриваемые поверхности.

Как обеспечить требования к качеству бетонной поверхности

О смазке

При возведении монолитных бетонных конструкций качество бетонных поверхностей обеспечивают непосредственно в процессе бетонирования без применения специальных методов отделки. Исключение составляет только один способ отделки – железнение горизонтальных поверхностей, применяемый для поверхностей, которые должны отвечать требованиям низкой истираемости и высокой плотности. Этот метод подробно описан в статье «Цементное железнение».

Железнение бетонной отмостки

Для обеспечения качества поверхностей бетонируемых конструкций без применения специальных методов отделки необходимо:

  • исключить прилипание бетона к палубе опалубки;
  • выполнить требование по размеру пор и раковин и их количеству на поверхности бетонной монолитной конструкции.

Справиться с этой задачей помогают специальные смазки для опалубки. Качественная смазка обеспечивает хорошее сцепление (адгезию) к палубе опалубки и одновременно плохое сцепление к поверхности бетона. Выбор смазки зависит от:

  1. материала опалубки;
  2. расположения опалубки – горизонтального или вертикального;
  3. способа нанесения смазки на опалубку;
  4. от вида пластификаторов в бетонной смеси.

Основная задача смазки – снизить усилия, необходимые для отрыва опалубки от бетона при распалубке конструкции. Раньше для этих целей применяли глиняные, известково-глиняные, меловые, тальковые составы. Однако их использование не исключало коррозию металлической опалубки, образование на бетонной поверхности жирных или ржавых пятен, не сокращало количество и размер воздушных пор. Кроме того опалубочные формы зарастали цементным камнем.

Позже стали использовать смазки на основе нефтепродуктов, в т.ч. на основе солярки и смазочных масел. Эти смазки были уже лучше, но при этом на бетоне от защемляемого воздуха образовывалось большое количество пор, появлялись темные масляные пятна, а в процессе эксплуатации здания в этом месте происходило отслоение и отшелушивание отделочного слоя. Поэтому стали использовать смазки на основе машинного, тормозного, веретенного масел в сочетании с солидолом, парафином, петролатумом.

Помимо использования смазки для опалубки хорошее качество бетонной поверхности обеспечивается вытеснением воздуха из опалубки в процессе подачи и уплотнения бетонной смеси. При бетонировании необходимо максимально исключить защемление воздуха на поверхности опалубки. Для этого важно соблюдать режим уплотнения и грамотно использовать пластифицирующие добавки.

Об уплотнении подвижных бетонных смесей

Подвижные и высокоподвижные бетонные смеси имеют в своем составе большое количество цементного клея и раствора, поэтому они быстро разжижаются и уплотняются. Уплотнение смесей марки П, П2, П3 производят вибрированием. Смеси марки от П4 и выше – самовыравнивающиеся, так как они растекаются и уплотняются под собственным весом, поэтому их только разравнивают и заглаживают.

Не допускаются участки неуплотненного бетона

В общем случае чем подвижнее бетонная смесь, тем больше вероятность её расслоения. С увеличением подвижности смеси вязкость входящего в её состав раствора падает и смесь хуже удерживает крупный заполнитель во взвешенном состоянии.

При бетонировании монолитных конструкций высокоподвижными и литыми смесями опалубку заполняют или с одного конца, или с середины. При таком заполнении происходит максимальное вытеснение воздуха из опалубки. При других схемах заполнения опалубки воздух может оставаться (защемляться) как внутри смеси, так и на опалубке.

Читайте также:
Клипсы для крепления электропроводки — особенности применения

Продолжительность вибрации подвижных бетонных смесей составляет:

  • для смеси марки П1 – 25-35 с;
  • марки П2 – 18-25 с;
  • марки П3 – 10-20 с;
  • марки П4 – 7 с;
  • марки П5 – не более 5 с.

О добавках

Для приготовления высокоподвижных смесей обычно используют пластифицирующие добавки. При превышении дозировки таких смесей увеличивается опасность расслоения смеси. В таком случае можно наблюдать эффект «кипения» бетонной смеси из-за интенсивного выделения воздуха, так как все пластифицирующее добавки одновременно и воздухововлекающие.

Особенно опасно превышение дозировки суперпластификатора, которое может привести к полному выпадению из смеси крупного заполнителя. В таком случае потребуется демонтаж забетонированной конструкции.

В нижеприведенном видео наглядно показан процесс расслоения и кипения бетона при передозировке пластификаторов (изложение материала начинается с 35-й секунды):

  • Класс бетонной поверхности монолитных конструкций

    ИЗДЕЛИЯ БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ ДЛЯ СТРОИТЕЛЬСТВА

    Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

    Concrete and reinforced concrete products for construction. General technical requirements. Rules for acceptance, marking, transportation and storage

    Дата введения 2014-01-01

    Предисловие

    Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены”

    Сведения о стандарте

    1 РАЗРАБОТАН Российской инженерной академией

    2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 “Строительство”

    3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию и оценке соответствия в строительстве (МНТКС) (дополнение N 1 к приложению В протокола от 4 июня 2012 г. N 40)

    За принятие проголосовали:

    Краткое наименование страны по МК (ИСО 3166) 004-97

    Сокращенное наименование национального органа по стандартизации

    Минэкономики Республики Армения

    Госстандарт Республики Казахстан

    4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2072-ст межгосударственный стандарт ГОСТ 13015-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

    5 В настоящем стандарте учтены основные нормативные положения следующих европейских стандартов EN 206-1:2000* “Бетон. Часть 1. Общие технические требования, эксплуатационные характеристики, производство и критерии соответствия” (“Concrete – Part 1: Specification, performance, production and conformity”, NEQ); EN 13369:2004 “Изделия бетонные и железобетонные сборные. Общие требования в части технических требований к бетонным и железобетонным изделиям” (“Common rules for precast concrete products”, NEQ)

    * Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. – Примечание изготовителя базы данных.

    7 ПЕРЕИЗДАНИЕ. Декабрь 2019 г.

    Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

    В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге “Межгосударственные стандарты”

    1 Область применения

    Настоящий стандарт распространяется на бетонные и железобетонные изделия для строительных конструкций (далее – изделия), изготовляемые из всех видов бетона, приведенных в ГОСТ 25192.

    Стандарт устанавливает основные характеристики изделий, общие технические требования к ним, общие правила приемки, маркировки, транспортирования и хранения.

    Требования настоящего стандарта должны учитываться при разработке стандартов на изделия конкретных видов, а также при разработке технических условий и (или) рабочих чертежей в составе рабочей документации на нестандартизованные изделия.

    2 Нормативные ссылки

    В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

    ГОСТ 535 Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия

    ГОСТ 7076 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

    ГОСТ 7473 Смеси бетонные. Технические условия

    ГОСТ 8829 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытания нагружением. Правила оценки прочности, жесткости и трещиностойкости

    ГОСТ 10060 Бетоны. Методы определения морозостойкости

    ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам

    ГОСТ 10922-90 Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия*

    * В Российской Федерации действует ГОСТ Р 57997-2017.

    ГОСТ 12730.1 Бетоны. Метод определения плотности

    ГОСТ 12730.2 Бетоны. Метод определения влажности

    ГОСТ 12730.3 Бетоны. Метод определения водопоглощения

    ГОСТ 12730.4 Бетоны. Метод определения показателей пористости

    ГОСТ 12730.5 Бетоны. Методы определения водонепроницаемости

    ГОСТ 13087 Бетоны. Методы определения истираемости

    ГОСТ 17623 Бетоны. Радиоизотопный метод определения средней плотности

    ГОСТ 17624 Бетоны. Ультразвуковой метод определения прочности

    ГОСТ 17625 Конструкции и изделия железобетонные. Радиационный метод определения толщины защитного слоя бетона, размеров и расположения арматуры

    ГОСТ 18105 Бетоны. Правила контроля и оценки прочности

    ГОСТ 20910 Бетоны жаростойкие. Технические условия

    ГОСТ 21779 Система обеспечения точности геометрических параметров в строительстве. Технологические допуски

    ГОСТ 22362 Конструкции железобетонные. Методы измерения силы натяжения арматуры

    ГОСТ 22690 Бетоны. Определение прочности механическими методами неразрушающего контроля

    ГОСТ 22904 Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры

    ГОСТ 23279 Сетки арматурные сварные для железобетонных конструкций и изделий. Общие технические условия

    ГОСТ 23616 Система обеспечения точности геометрических параметров в строительстве. Контроль точности

    ГОСТ 23858 Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки

    ГОСТ 25192 Бетоны. Классификация и общие технические требования

    ГОСТ 25214 Бетон силикатный плотный. Технические условия

    ГОСТ 25246 Бетоны химически стойкие. Технические условия

    ГОСТ 25485 Бетоны ячеистые. Технические условия

    ГОСТ 25820 Бетоны легкие. Технические условия

    ГОСТ 25898 Материалы и изделия строительные. Методы определения сопротивления паропроницанию

    ГОСТ 26433.1 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

    ГОСТ 26633 Бетоны тяжелые и мелкозернистые. Технические условия

    ГОСТ 27005 Бетоны легкие и ячеистые. Правила контроля средней плотности

    ГОСТ 27006 Бетоны. Правила подбора состава

    ГОСТ 27296 Защита от шума в строительстве. Звукоизоляция ограждающих конструкций зданий. Методы измерения

    ГОСТ 28574 Защита от коррозии в строительстве. Конструкции бетонные и железобетонные. Методы испытаний адгезии защитных покрытий

    ГОСТ 28575 Защита от коррозии в строительстве. Конструкции бетонные и железобетонные. Испытание паропроницаемости защитных покрытий

    ГОСТ 30108 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

    ГОСТ 30247.1 Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции

    Читайте также:
    Как оформить займ под залог квартиры?

    ГОСТ 30403 Конструкции строительные. Метод определения пожарной опасности

    Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

    3 Термины и определения

    В настоящем стандарте применены следующие термины с соответствующими определениями:

    3.1 строительное изделие: Изделие, предназначенное для применения в качестве элемента строительных конструкций зданий и сооружений.

    3.2 строительная конструкция: Часть здания или сооружения, выполняющая несущие, ограждающие и (или) эстетические функции.

    3.3 рабочая документация на изделие: Совокупность проектной документации, включающей в себя в общем случае спецификацию, сборочный чертеж, чертежи деталей и, при необходимости, технические условия.

    3.4 технологическая документация: Документация, относящаяся к технологическим процессам и операциям при изготовлении изделий (технологический регламент или технологическая карта).

    Категория и класс поверхности бетона: изучаем развернуто

    Благодаря постоянному развитию бетонных технологий современные архитекторы научились создавать не только технологически сложные, но красивые проекты построек из бетона.

    Архитектурная выразительность современных бетонных конструкций обеспечивается высоким качеством и однородностью их лицевой поверхности, или, наоборот, приданием ей определенной декоративной текстуры.

    Для чего выравнивается поверхность бетона

    Бетонные изделия обязаны отвечать заявленным производителями размерам, а также они должны обладать ровной поверхностью и хорошей адгезией, чтобы можно было быстро покрывать их отделочными материалами. Кроме того, бетонные (железобетонные) сооружения часто эксплуатируются в неблагоприятных условиях, поэтому небольшие неровности и углубления, заполненные водой, могут стать причиной разрушения бетонного покрытия. Например, в результате разности температур из глубинных слоев (через поры) к верхнему слою бетона выталкивается вода, которая его разрушает.

    Поэтому улучшить отвод воды с поверхности бетона позволяет шлифование шероховатостей и затирка углублений. Это требуется делать на дорожных и аэродромных покрытиях, полах, внутренних стенах и фасадах строений. Кроме того, выравнивание поверхности бетона позволяет повысить привлекательность и адгезию ЖБИ, поэтому на них можно наносить и наклеивания различные отделочные материалы (краски, гидроизоляционные материалы, обои и т.д.).

    Качество бетонных поверхностей в нашей стране регламентируют ГОСТы, технические условия (ТУ) и СНиПы.

    Какие классы бетонных поверхностей бывают?

    Для оценки качества поверхности и внешнего вида монолитных железобетонных и бетонных конструкций сводом правил СП 70.13330.2012 (Приложение Ц) предусмотрены 4 класса (не путать с категориями бетонной поверхности изделия):

    • класс А3;
    • класс А4;
    • класс А6;
    • класс А7.

    Класс бетонной поверхности определяется по предельным допускам прямолинейности и местных неровностей (см. таблицу ниже). Под допуском прямолинейности понимают наибольшее допускаемое отклонение от прямолинейности (см. рисунок).

    Допуски прямолинейности для измеряемых расстояний, мм

    Местные неровности -0,1м

    Не допускается обнажение арматуры

    Указанные предельные допуски применяют при условии их соответствия по толщине защитного слоя бетона и по размерам сечений элементов.

    Класс бетонной поверхности определяется для:

    • фундаментов;
    • стен;
    • перекрытий;
    • колонн;
    • иных конструкций с прямолинейными поверхностями.

    Класс и качество бетонной поверхности должны указываться в проектной документации. В случаях, когда класс неоговорен, он принимается равным А6 или А7 в зависимости от назначения (о назначении бетонных поверхностей разного класса написано ниже).

    Также в проектной документации указываются дополнительные требования к бетонным поверхностям, эксплуатируемым в условиях постоянного воздействия движущейся воды или других агрессивных воздействий.

    Способы выравнивания поверхности бетона

    Выравнивается бетонная поверхность в основном с помощью шлифования, оштукатуривания и самовыравнивающихся стяжек.

    В первом случае используют специальные шлифовальные машинки и болгарки со шлифовальными кругами (чашами). Если используют болгарки, то на них ставят шлифовальные диски (чаши) зернистостью 40 — 60, которыми обрабатывают поверхность. Если за один раз не удается получить требуемого результата, то процедуру повторяют. На финальном этапе бетон полируют шлифовальными дисками (чашами) зернистостью от 80, постепенно ее увеличивая. При этом можно использовать сухой или влажный способ обработки поверхности.

    Важно! В процессе механической обработке выделяется пыль и могут отлетать небольшие частицы бетона, поэтому необходимо надевать рукавицы, респиратор и очки.

    Выравнивают стены и потолки также с помощью штукатурки. Используется цементная смесь с крупнозернистым или мелкозернистым песком. При этом для качественного сцепления штукатурки с поверхностью может использоваться металлическая проволочная сетка. Её крепят к поверхности чаще всего с помощью дюбелей. Точек крепления на 1 м2 должно быть не менее двадцати, так этот минимум прописан в СНиП.

    Полы же выравнивают самовыравнивающимися стяжками. Для этого на предварительно подготовленную (очищенную от пыли и грязи) поверхность наливают специальную самовыравнивающуюся смесь, которая полностью покрывает неровности и углубления. Классическим черновым вариантом является смесь на основе цемента, песка и других наполнителей.

    На бетонных поверхностях ДОПУСКАЮТСЯ:

    • для стеновых конструкций — отверстия под тяжи с оставляемыми в них пластмассовыми защитными трубками тяжа, отверстия под анкеры (заделка отверстий должна быть оговорена в проектной документации или ППР отдельно);
    • отпечатки щитов и элементов опалубки;
    • обнажение арматурных фиксаторов;
    • для нижней поверхности перекрытий — отпечатки щитов и элементов палубы, элементы крепления пластмассовых конструкций, электрической разводки и т.п.

    Для обеспечения требований для бетонных поверхностей классов А3 и А4 рекомендуется шлифование местных выступов и затирка местных впадин для достижения требуемых показателей.

    Категория и класс поверхности бетона

    Качество бетонных поверхностей должно отвечать действующим в нашей стране техническим нормам. Причем предъявляют особые требования к лицевым, окрашиваемым и оклеиваемым элементам. Менее требовательны к второстепенным поверхностям.

    Для определения качества поверхности замеряют линейную разницу между неровностями и впадинами на единице длины и по этим данным устанавливают её класс А3, А4, А5, А6 или А7. Все параметры этих классов прописаны в ГОСТе 13015.0-83, который распространяется на все элементы с прямолинейными поверхностями. Критерии криволинейных поверхностей (на них действуют более строгие правила) указывают в рабочей документации.

    Для получения требуемого качества поверхности в производстве ЖБИ используют подходящие по фракции сыпучие материалы, способы заливки, уплотнения и ухода. Также нужно не забывать про транспортировку ЖБИ, потому что в процессе перевозки бетонные изделия тоже часто повреждаются.

    Читайте также:
    Как правильно наклеивать стеклохолст под шпаклевку

    Быстро определить класс поверхности бетона позволяет приведенная ниже таблица.

    Кроме того, ГОСТ 13015.0-83 также регламентирует допустимые и недопустимые дефекты данной поверхности.

    1. Оголенная арматура за исключением монтажных выпусков, с помощью которых соединяют все элементы в единое целое (их указывают на чертежах).
    2. Ржавчина и жировые пятна (кроме А7).
    3. Неуплотненные участки.
    4. Трещины >0,1 мм на конструкциях, установленных на улице, не более 0,2 мм на изделиях, эксплуатируемых в помещениях.
    5. Раковины (сколы) на поверхностях следующих классов:
    • класс поверхностей бетона А3 – ⌀ >4 мм, глубина >2 мм (глубина 5 мм, общая длина >50 мм на 1 м ребра);
    • А4 – ⌀ >10 мм, глубина >2 мм (глубина 5 мм, общая длина >50 мм на 1 м ребра);
    • А6 – ⌀ >15 мм, глубина >5 мм (глубина 10 мм, общая длина >100 мм на 1 м ребра);
    • А7 – ⌀ >20 мм, глубина 20 мм (общая длина не указана).

    Важно! Если на поверхности имеются недопустимые дефекты, то во многих случаях их можно устранить приведенными ниже способами.

    • грузоподъемные отверстия и отверстия для анкеров или шпилек;
    • следы от опалубки;
    • для второстепенных сторон – элементы проводки и креплений.

    Все монтажные элементы должны быть зачищены от брызг и наплывов. Чтобы бетонные конструкции отвечали всем требованиям необходимо затирать на них впадины и шлифовать все имеющиеся неровности.

    Определение возможных нагрузок

    Нагрузка на железобетонные сборные конструкции регламентируются ГОСТом.

    Для строительных конструкций при определении нагрузок следует пользоваться указаниями СНиП 2.02.07-85 “Воздействия и нагрузки”. Для подборки по справочнику, к примеру, плиты перекрытия понадобится подсчитать расчетную нагрузку на 1 кв.м плиты. При этом не нужно учитывать собственный вес плиты. Нагрузку будет составлять вес пола, а также полезная нагрузка на перекрытие. Вес 1 кв.м пола можно посчитать в случае, если знать конструкцию пола и объемный вес материалов, которые применялись.

    Значение полезной нагрузки (люди, оборудование) должно определяться назначением помещения и здания. Для квартиры в жилом доме полезная нагрузка составит 150 кг на 1 кв.м. Для того чтобы вычислить расчетное значение нагрузок, понадобится вес пола и полезную нагрузку умножить на следующие коэффициенты: g f – коэффициент надежности по нагрузкам (вес пола – g f = 1,2, полезная нагрузка квартиры в жилом доме – g f = 1,3), g n = коэффициент назначения здания по надежности (общественные и жилые здания – g n = 0,95, жилые здания, которые имеют всего один этаж, – g n = 0,9). Нагрузку для плит покрытия будет составлять вес кровли и нагрузка снега. Вес 1 кв.м кровли есть возможность подсчитать, если знать конструкцию кровли, а также объемный вес материалов, которые были применены.

    Погонная нагрузка должна определяться исходя из планируемых нагрузок на 1 кв.м покрытия (кг/кв.м). Сделать это можно путем умножения данной нагрузки на шаг, с которым укладывались ригели (чаще всего данное значение равняется 6 м). Для подбора железобетонных сборных конструкций фундаментов, к примеру, плит ленточного фундамента, понадобится знать нормативное (g f = 1) давление на грунт. Для того чтобы была возможность определить нормативное давление на грунт, следует суммировать нагрузку на плиты ленточного фундамента от веса стенки и нагрузку, которая будет передаваться на стенку от покрытия и перекрытий. Суммарная нагрузка будет делиться на площадь фундаментных плит (кг/1 кв.м). Самое большое нормативное давление грунта должно не превышать сопротивление необходимого грунта основания R0.

    Железобетонные плиты ленточных фундаментов

    Железобетонные плиты ленточных фундаментов предназначаются для применения:

    Железобетонные плиты ленточных фундаментов имеют разные размеры.

    • в водонасыщенных и сухих грунтах;
    • при температуре наружного воздуха до -40 градусов включительно;
    • с расчетной сейсмичностью включительно до 9 баллов;
    • в грунтовых водах и грунтах с неагрессивной степенью воздействия в процессе использования бетона с нормальной проницаемостью (Н), в грунтовых водах и грунтах с агрессивной степенью воздействия в процессе использования бетона с пониженной (П) и особо низкой (О) проницаемостью.

    Плиты можно подразделить на 4 группы по несущей способности. Плиты каждой из групп характеризуются самым большим допустимым давлением на основание под подошвой фундамента. Подобные плиты должны быть изготовлены из тяжелого бетона. По прочности класс бетона следует определять шириной плиты и группой нагрузки. Защитный слой бетона равняется 30 мм. В качестве рабочей арматуры следует использовать арматуру классов А-3 и ВР-1.

    При определении самого большого допустимого давления на основание под подошвой фундаментов следует учитывать нормативную нагрузку, которая передается строительными вышележащими конструкциями на плиту фундаментов и собственный вес плиты (коэффициент надежности по назначению здания g n = 0,95, коэффициент надежности по нагрузке g f = 1).

    Бетонные блоки

    Подобные блоки изготавливаются из тяжелого бетона (Т), плотного силикатного бетона (С) и керамзитобетона (П – пористый заполнитель). Они предназначаются для стенок подвалов и технического подполья. Средней плотностью тяжелого бетона является значение, которое равняется 2200 кг на 1 куб.м, керамзитобетона – 1800 кг на 1 куб.м, а плотного силикатного бетона – 2000 кг на 1 куб.м.

    На сегодняшний день выпускаются блоки трех типов:

    Плиты ФБС используют при строительстве фундаментов.

    1. ФБС – сплошные.
    2. ФБВ – сплошные с вырезом для пропуска коммуникаций под потолками подвалов и технического подполья, укладки перемычек.
    3. ФБП – пустотные (то есть с пустотами, которые открыты вниз). Водонепроницаемость и морозостойкость бетона назначается в зависимости от того, какой режим эксплуатации имеет здание.

    Монтажные петли чаще всего изготавливаются из арматуры класса А-1. Об этом уже говорилось выше, однако в качестве итога стоит сказать, что возможна установка следующих категорий бетонных поверхностей:

    • А3 – лицевая поверхность под окраску;
    • А5 – лицевая поверхность под выполнение отделки керамической плиткой, которая укладывается на раствор;
    • А6 – лицевая, которая не подлежит отделке;
    • А7 – нелицевая, которая невидима в условиях эксплуатации.

    Могут быть допущены мелкие усадочные трещины. Ширина их раскрытия ни в коем случае не должна превышать 0,1 мм для плотного силикатного и тяжелого бетона и 0,2 мм для керамзитобетона. В процессе использования матриц из различных материалов бетон может отличаться по цвету, тону и текстуре в связи с различной всасывающей способностью материала матриц. Следовательно, не рекомендуется применять различные материалы, чтобы выполнить набор матричного ковра в одной форме. Цветовая неоднородность бетонного изделия может вызываться неравномерным скоплением воды в местах, в которых бетон контактирует с матрицей. Особенно на участках, где имеется переменная глубина рельефа. Излишняя вода способна привести к осветлению поверхности.

    На качество бетонной конструкции будут влиять и режимы тепловой обработки, срок распалубливания.

    Читайте также:
    Как сделать волшебную палочку

    Те изделия, которые распалубливаются сразу после тепловой обработки, будут иметь более светлый тон.

    Выводы

    От качества бетонных поверхностей зависит не только область их применения, но также их свойства и привлекательность. Для получения необходимого качества поверхности бетона часто требуется использовать более эффективный и подходящий способ её выравнивания, которые были описаны в этой статье. Благодаря этому любой человек может самостоятельно подготовить бетонную поверхность к чистовой отделке (окрашиванию, оклеиванию и облицовке гипсокартоном, кафельной плиткой и т.д.). Это позволит вам красиво оформить снаружи любые строения или внутренние помещения.

    Многопустотные железобетонные плиты перекрытия

    Многопустотные плиты перекрытий используют в строительстве высотных домов.

    Подобные плиты могут быть изготовлены при помощи тяжелого либо конструкционного легкого бетона, который имеет плотность не менее чем 1400 кг на 1 куб.м (в марке будет обозначаться как Л) и плотного силикатного бетона (С), плотность которого как минимум 1800 кг на 1 куб.м. В качестве напрягаемой арматуры следует использовать арматуру следующих классов: А-4, А-5, А-6, Ат-4, Ат-5, Ат-6, А-3в, а также канаты и высокопрочную проволоку. В качестве ненапрягаемой арматуры необходимо применять арматуру следующих классов: А-1, А-2, А-3, Вр-1.

    Плиты подразделяются на следующие типы:

    1. 1ПК – плиты, которые имеют толщину 220 мм с круглыми пустотами и 159 мм с опиранием на 2 стороны.
    2. 1ПКТ – плиты, имеющие толщину 220 мм с круглыми пустотами и 159 мм с опиранием на 3 стороны.
    3. 1ПКК – плиты толщиной 220 и 159 мм с опиранием по 4 сторонам.
    4. 2ПК – плиты, которые имеют толщину 220 мм с круглыми пустотами и 140 мм с опиранием на 2 стороны.
    5. 2ПКТ – плита толщиной 220 мм с круглыми пустотами и 140 мм с опиранием на 3 стороны.
    6. 2ПКК – плита, которая имеет толщину 220 мм с круглыми пустотами и 140 мм с опиранием на 4 стороны.
    7. 3ПК – плита, имеющая толщину 220 мм с круглыми пустотами и 127 мм с опиранием на 2 стороны.
    8. 4ПК – плита, которая имеет толщину 260 мм с круглыми пустотами и 159 мм и вырезами с верхней зоны по контуру с опиранием на 2 стороны.
    9. 5ПК – плита, имеющая толщину 250 мм с круглыми пустотами и 180 мм с опиранием на 2 стороны.
    10. 6ПК – плита, которая имеет толщину 300 мм с круглыми пустотами и 203 мм с опиранием на 2 стороны.
    11. 7ПК – плита толщиной 160 мм с круглыми пустотами и 114 мм с опиранием на 2 стороны.
    12. ПГ – плита, имеющая высоту 260 мм с грушевидными пустотами и опиранием на 2 стороны.
    13. ПБ – плита, которая имеет высоту 220 мм, изготавливается на стенде с помощью использования метода непрерывного формования.

    Далее будет рассмотрен пример условного обозначения плиты. 1ПК 63.14 – 6АтУ, где после типа плиты будет указываться ширина и длина в дециметрах, после тире будет записываться значение расчетной нагрузки на плиты в кН на 1 кв.м (за исключением учета собственного веса плит) и класс напрягаемой арматуры. Есть вероятность того, что марка будет содержать буквенное обозначение НО – неагрессивные условия эксплуатации, а плита здесь будет без особенностей.

    Категории поверхностей бетона: потолочной (нижней) – А2, А3, А4, А6 в зависимости от вида последующей отделки потолка и назначения помещения; боковых и верхней – А7.

    Категория и класс поверхности бетона

    В целях оценки свойства поверхностей железобетонных цельных и бетонных конструкций употребляется 4 главных класса, которые определяются по местным неровностям и предельным допускам прямолинейности. Понятие классов поверхности будет распространяться на фундаменты, колонны, перекрытия и остальные конструкции из бетона, имеющие прямолинейные поверхности.

    Бетонная поверхность разделяется на 4 класса.

    Качество и класс бетонной поверхности должны быть указаны в проектной документации. В случае когда класс поверхности не оговаривается, его следует принимать зависимо от предназначения – А6 или А7:

    Класс А3. Местные выпуклости 0,1 м – 2; 1 м – 4,5; 2 м – 7; 3 м – 9,5. Класс поверхности А4. Местные выпуклости 0,1 м – 1, 1 м – 7,5, 2 м – 10,15, 3 м – 14. Класс А6. Местные выпуклости 0,1 м – 5, 1 м – 10, 2 м – 12, 3 м – 15. Класс поверхности А7. Местные выпуклости 0,1 м – 10, 1 м – 15, 2 м – 15, 3 м – 15. По этому поводу необходимо знать один аспект.

    Лицевая поверхность колонны имеет класс А3.

    Допуски, которые были указаны, используются лишь только при условии соответствия допусков по толщине бетонного защитного слоя и по размерам сечения частей. Доп требования к бетонной поверхности, которые эксплуатируются в критериях непрерывного действия передвигающейся воды или остальных брутальных действий, должны непременно указываться в проектной документации. Дальше будет рассмотрено основное предназначение бетонных поверхностей:

    Класс А3. Лицевая поверхность стенок, колонн и нижняя поверхность перекрытий, к которым будут предъявляться завышенные требования к внешнему облику. Данная поверхность предназначается для усовершенствованной покраски без шпатлевки. Класс А4. Лицевая поверхность стенок, колонн и нижняя поверхность перекрытий, которые подготавливаются под отделку (оклейка обоями, облицовка). Класс А6. Лицевая поверхность стенок, колонн, нижняя поверхность перекрытий, к которым не будут предъявляться особые требования к качеству поверхностей. Поверхность предназначается под обычную расцветку или без отделки совсем. Класс поверхности А7. Оштукатуриваемые и скрываемые поверхности.

    Главные ошибки

    Необходимо знать, что на бетонной поверхности ни при каких обстоятельствах не допускаются:

    Не допускаются трещинкы на бетонной поверхности.

    Участки неуплотненного бетона. Жировые пятна и пятна ржавчины (не считая класса А7). Обнажение арматуры (кроме крепежных монтажных частей опалубки, рабочих выпусков арматуры). Трещинкы шириной раскрытия, которые указываются в проекте (рекомендуемым значением будет 0,1 мм в конструкциях из бетона, которые не защищаются от осадков, 0,2 мм – в помещении). Раковины (сколы бетона ребер) для последующих поверхностей: – класса А3 – поперечник наиболее чем 4 мм, а глубина – наиболее чем 2 мм (глубина 5 мм, суммарная длина наиболее чем 50 мм на 1 м ребра); – класса А4 – поперечник наиболее 10 мм, а глубина наиболее 2 мм (глубина 5 мм, суммарная длина больше чем 50 мм на 1 м ребра); – класса поверхностей А6 – поперечник начиная от 15 мм, а глубина больше чем 5 мм (глубина 10 мм, суммарная длина наиболее 100 мм на 1 м ребра); – класса А7 – поперечник начинается от 20 мм (глубина 20 мм, а суммарная длина не регламентируется). Местные впадины, наплывы, выпуклости, которые превосходят допуски для нужных классов поверхностей при измеряемом расстоянии, которое приравнивается 0,1 м. Для поверхностей класса А3 не могут быть допущены наплывы и выступы.

    Читайте также:
    Как сшить детскую разноцветную юбку?

    Дальше разглядим, что все-таки быть может допущено на бетонных поверхностях:

    Отпечатки опалубки допустимы на бетонной поверхности.

    Для конструкций стен – отверстия под анкеры, отверстия под тяжи (с защитными пластмассовыми трубками тяжа, которые должны быть оставлены в их). Отпечатки частей опалубки или щитов. Обнажение фиксаторов арматуры. Для нижней поверхности перекрытий – отпечатки частей опалубки или щитов, крепления пластмассовых конструкций, элементы электронной разводки и т. д..

    Для того чтоб обеспечить соответствие всем требованиям, для бетонных поверхностей класса А3 и А4 рекомендуется затирать местные впадины и шлифовать местные выступы.

    Общие технические требования

    Стоит увидеть, что в согласовании с ГОСТ 23009-78 железобетонным сборным конструкциям должны присваиваться марки. Марки содержат буквенные и числовые знаки, которые отражают информацию о размерах, виде, несущей возможности конструкции, о материалах, которые употребляются (арматуре, бетоне), и доп свойствах (стойкости к действию брутальной среды, сейсмостокости и иным).

    Информация о общих технических требованиях относительно сборных железобетонных конструкций содержится в ГОСТ 13015.0-83. Полное управление по этому поводу можно будет отыскать в данном документе. Стоит знать, что требования будут предъявляться к последующему:

    Железобетонным конструкциям присваиваются марки, которые содержат информацию о размерах, виде, несущей возможности конструкции, о материалах, которые употребляются (арматуре, бетоне), и доп свойствах.

    К точности производства конструкций (должны быть установлены предельные значения отличия геометрических характеристик, фактической массы, толщин защитных слоев). К закладным деталям и арматуре (пригодится соответствие видов, марок и классов сталей эталонам на конструкции определенных видов; устанавливается уровень подготовительного напряжения арматуры, который контролируется; назначается техно черта и вид антикоррозийного покрытия). К бетону (обязана нормироваться отпускная крепкость бетона; будет требоваться соответствие марок по водонепроницаемости и морозостойкости бетона эталонам зависимо от погодных критерий района строительства и режима эксплуатации; по необходимости обязана нормироваться средняя плотность, теплопроводимость, влажность, истираемость бетона). К внешнему облику и качеству поверхностей конструкций. Другими словами соответствие свойства отделки гладких поверхностей стандартам отделки определенной категории: А0 – лицевая поверхность заводской полной готовности; А1, А2 – лицевая поверхность под расцветку для интерьеров или полной заводской готовности; А3 – лицевая поверхность под отделку красками, глазурями или пастообразными составами для фасадов и интерьеров; А4 – лицевая поверхность под отделку тонкими полимерными плитками или обоями; А5 – лицевая поверхность под отделку глиняной или иной плиткой по раствору; А6 – лицевая поверхность, которая не отделывается; А7 – нелицевая поверхность.

    Для того чтоб обозначить рельефную поверхность, следует к категории опосля тире добавить буковку “Р”. Отколы бетона, раковины, местные наплывы на поверхности бетона допускаются, но их размеры и количество должны нормироваться для категорий, которые были установлены. Могут быть допущены ограниченные по ширине (0,1-0,2 мм) технологические трещинкы.

    Определение вероятных нагрузок

    Перегрузка на железобетонные сборные конструкции регламентируются ГОСТом.

    Для строй конструкций при определении нагрузок следует воспользоваться указаниями СНиП 2.02.07-85 “Действия и перегрузки”. Для выборки по справочнику, например, плиты перекрытия пригодится подсчитать расчетную нагрузку на 1 кв. м плиты. При всем этом не надо учесть свой вес плиты. Нагрузку будет составлять вес пола, также нужная перегрузка на перекрытие. Вес 1 кв. м пола можно посчитать в случае, ежели знать конструкцию пола и большой вес материалов, которые применялись.

    Значение полезной перегрузки (люди, оборудование) обязано определяться предназначением помещения и строения. Для квартиры в жилом доме нужная перегрузка составит 150 кг на 1 кв. м. Для того чтоб вычислить расчетное значение нагрузок, пригодится вес пола и полезную нагрузку помножить на последующие коэффициенты: g f – коэффициент надежности по перегрузкам (вес пола – g f = 1,2, нужная перегрузка квартиры в жилом доме – g f = 1,3), g n = коэффициент предназначения строения по надежности (публичные и жилые строения – g n = 0,95, жилые строения, которые имеют всего один этаж, – g n = 0,9). Нагрузку для плит покрытия будет составлять вес кровли и перегрузка снега. Вес 1 кв. м кровли есть возможность подсчитать, ежели знать конструкцию кровли, также большой вес материалов, которые были использованы.

    Значение перегрузки снега обязано определяться в согласовании со районом строительства (Столичная область и Москва относятся к третьему снеговому району Русской Федерации, снеговая перегрузка на кровлю с уклоном до 25 градусов и плоскую кровлю включительно будет составлять 100 кг на 1 кв. м). Коэффициент надежности по перегрузке для снеговой перегрузки равен g f = 1,4. Для того чтоб подобрать некие конструкции, например, ригель, пригодится найти нагрузку на 1 пог. м конструкции (кг/пог. м).

    Погонная перегрузка обязана определяться исходя из планируемых нагрузок на 1 кв. м покрытия (кг/кв. м). Сделать это можно методом умножения данной перегрузки на шаг, с которым укладывались ригели (почаще всего данное значение приравнивается 6 м). Для подбора железобетонных сборных конструкций фундаментов, например, плит ленточного фундамента, пригодится знать нормативное (g f = 1) давление на грунт. Для того чтоб была возможность найти нормативное давление на грунт, следует суммировать нагрузку на плиты ленточного фундамента от веса стены и нагрузку, которая будет передаваться на стену от покрытия и перекрытий. Суммарная перегрузка будет делиться на площадь фундаментных плит (кг/1 кв. м). Самое огромное нормативное давление грунта обязано не превосходить сопротивление нужного грунта основания R0.

    Железобетонные плиты ленточных фундаментов

    Железобетонные плиты ленточных фундаментов предназначаются для внедрения:

    Железобетонные плиты ленточных фундаментов имеют различные размеры.

      в водонасыщенных и сухих грунтах; при температуре внешнего воздуха до -40 градусов включительно; с расчетной сейсмичностью включительно до 9 баллов; в грунтовых водах и грунтах с неагрессивной степенью действия в процессе эксплуатации бетона с обычной проницаемостью (Н), в грунтовых водах и грунтах с брутальной степенью действия в процессе эксплуатации бетона с пониженной (П) и особо низкой (О) проницаемостью.

    Плиты можно подразделить на 4 группы по несущей возможности. Плиты каждой из групп характеризуются наибольшим допустимым давлением на основание под подошвой фундамента. Подобные плиты должны быть сделаны из томного бетона. По прочности класс бетона следует определять шириной плиты и группой перегрузки. Защитный слой бетона приравнивается 30 мм. В качестве рабочей арматуры следует применять арматуру классов А-3 и ВР-1.

    При определении наибольшего допустимого давления на основание под подошвой фундаментов следует учесть нормативную нагрузку, которая передается строй вышележащими конструкциями на плиту фундаментов и свой вес плиты (коэффициент надежности по предназначению строения g n = 0,95, коэффициент надежности по перегрузке g f = 1).

    Бетонные блоки

    Подобные блоки делаются из томного бетона (Т), плотного силикатного бетона (С) и керамзитобетона (П – пористый заполнитель). Они предназначаются для стен подвалов и технического подполья. Средней плотностью томного бетона является значение, которое приравнивается 2200 кг на 1 куб. м, керамзитобетона – 1800 кг на 1 куб. м, а плотного силикатного бетона – 2000 кг на 1 куб. м.

    Читайте также:
    Как сделать дробилку - измельчитель для пластика своими руками

    На сегодня выпускаются блоки 3-х типов:

    Плиты ФБС употребляют при строительстве фундаментов.

    ФБС – сплошные. ФБВ – сплошные с вырезом для пропуска коммуникаций под потолками подвалов и технического подполья, укладки перемычек. ФБП – пустотные (другими словами с пустотами, которые открыты вниз). Водонепроницаемость и морозостойкость бетона назначается зависимо от того, какой режим эксплуатации имеет здание.

    Монтажные петли почаще всего делаются из арматуры класса А-1. О этом уже говорилось выше, но в качестве итога стоит сказать, что вероятна установка последующих категорий бетонных поверхностей:

      А3 – лицевая поверхность под расцветку; А5 – лицевая поверхность под выполнение отделки глиняной плиткой, которая укладывается на раствор; А6 – лицевая, которая не подлежит отделке; А7 – нелицевая, которая невидима в критериях эксплуатации.

    Могут быть допущены маленькие усадочные трещинкы. Ширина их раскрытия ни при каких обстоятельствах не обязана превосходить 0,1 мм для плотного силикатного и томного бетона и 0,2 мм для керамзитобетона. В процессе эксплуатации матриц из разных материалов бетон может различаться по цвету, тону и текстуре в связи с различной поглощающей способностью материала матриц. Как следует, не рекомендуется использовать разные материалы, чтоб выполнить набор матричного ковра в одной форме. Цветовая неоднородность бетонного изделия может вызываться неравномерным скоплением воды в местах, в каких бетон контактирует с матрицей. В особенности на участках, где имеется переменная глубина рельефа. Излишняя вода способна привести к осветлению поверхности.

    На качество бетонной конструкции будут влиять и режимы термический обработки, срок распалубливания.

    Те изделия, которые распалубливаются сходу опосля термический обработки, будут иметь наиболее светлый тон.

    Многопустотные железобетонные плиты перекрытия

    Многопустотные плиты перекрытий употребляют в строительстве высотных домов.

    Подобные плиты могут быть сделаны с помощью томного или конструкционного легкого бетона, который имеет плотность более чем 1400 кг на 1 куб. м (в марке будет обозначаться как Л) и плотного силикатного бетона (С), плотность которого как минимум 1800 кг на 1 куб. м. В качестве напрягаемой арматуры следует применять арматуру последующих классов: А-4, А-5, А-6, Ат-4, Ат-5, Ат-6, А-3в, также канаты и прочную проволоку. В качестве ненапрягаемой арматуры нужно использовать арматуру последующих классов: А-1, А-2, А-3, Вр-1.

    Плиты разделяются на последующие типы:

    1ПК – плиты, которые имеют толщину 220 мм с круглыми пустотами и 159 мм с опиранием на 2 стороны. 1ПКТ – плиты, имеющие толщину 220 мм с круглыми пустотами и 159 мм с опиранием на 3 стороны. 1ПКК – плиты шириной 220 и 159 мм с опиранием по 4 сторонам. 2ПК – плиты, которые имеют толщину 220 мм с круглыми пустотами и 140 мм с опиранием на 2 стороны. 2ПКТ – плита шириной 220 мм с круглыми пустотами и 140 мм с опиранием на 3 стороны. 2ПКК – плита, которая имеет толщину 220 мм с круглыми пустотами и 140 мм с опиранием на 4 стороны. 3ПК – плита, имеющая толщину 220 мм с круглыми пустотами и 127 мм с опиранием на 2 стороны. 4ПК – плита, которая имеет толщину 260 мм с круглыми пустотами и 159 мм и вырезами с верхней зоны по контуру с опиранием на 2 стороны. 5ПК – плита, имеющая толщину 250 мм с круглыми пустотами и 180 мм с опиранием на 2 стороны. 6ПК – плита, которая имеет толщину 300 мм с круглыми пустотами и 203 мм с опиранием на 2 стороны. 7ПК – плита шириной 160 мм с круглыми пустотами и 114 мм с опиранием на 2 стороны. ПГ – плита, имеющая высоту 260 мм с грушевидными пустотами и опиранием на 2 стороны. ПБ – плита, которая имеет высоту 220 мм, делается на щите при помощи использования способа непрерывного формования.

    Дальше будет рассмотрен пример условного обозначения плиты. 1ПК 63.14 – 6АтУ, где опосля типа плиты будет указываться ширина и длина в дециметрах, опосля тире будет записываться значение расчетной перегрузки на плиты в кН на 1 кв. м (кроме учета собственного веса плит) и класс напрягаемой арматуры. Есть возможность того, что марка будет содержать буквенное обозначение НО – неагрессивные условия эксплуатации, а плита тут будет без особенностей.

    Категории поверхностей бетона: потолочной (нижней) – А2, А3, А4, А6 зависимо от вида следующей отделки потолка и предназначения помещения; боковых и верхней – А7.

    Виды клапанов для систем отопления, их назначение и функциональные особенности

    В комплектацию любой отопительной системы должны входить элементы регулировки и безопасности. С их помощью происходит изменение параметров теплоснабжения – стабилизация работы, автоматическая настройка. Для этих целей используются клапаны для систем отопления: балансировочный, обратный, трехходовой.

    1. Назначение клапанов для отопления
    2. Перепускные отопительные клапаны
    3. Виды регулировочных клапанов для отопления
    4. Назначение балансировочного клапана в отоплении
    5. Защитные отопительные клапаны
    6. Воздушный клапан отопления
    7. Обратный клапан отопления
    8. Трехходовой клапан отопления

    Назначение клапанов для отопления

    Автономное или централизованное теплоснабжение должно адаптироваться под текущие значения параметров – давление и температуру в системе. Для выполнения этой задачи необходим байпасный клапан в системе отопления, смесительный, предохранительный и другие.

    Клапаны в системе отопления

    В отличие от запорной арматуры они работают в автоматическом или полуавтоматическом режиме. Все регулирующие клапана отопления должны соответствовать параметрам конкретного теплоснабжения.

    Для этого необходимо сначала рассчитать характеристики, составить подробную схему и согласно полученным данным выбрать оптимальный спускной клапан отопления и другие виды подобных элементов.

    Основными критериями являются:

    • Температурный режим работы системы. Запорный клапан на отопление должен нормально функционировать даже при критическом термическом воздействии;
    • Давление — номинальное и максимальное. Каждый редукционный клапан системы отопления имеет определенные границы срабатывания, которые должны быть ниже максимального на 5-10%;
    • Вид теплоносителя – вода или антифриз. В последнем случае возможны сбои в работе, так как воздушный клапан для отопления не рассчитан на жидкость с большей плотностью, чем вода.

    Подходящий клапан для стравливания воздуха из системы отопления выбирается еще на стадии расчета. Работа этого устройства и аналогичных ему компонентов должны стабилизировать состояние системы в случае возникновения риска аварийных ситуаций. Поэтому необходимо знать принцип работы и виды клапанов для теплоснабжения.

    Некоторые эксплуатационные характеристики указываются непосредственно на корпусе перепускного клапана для отопления. Если же этого нет – обязательно необходима профессиональная консультация.

    Перепускные отопительные клапаны

    Нередко во время работы теплоснабжения происходит превышение температурного режима. Это провоцирует рост давления и как следствие – разрушение компонентов системы. Для своевременного удаления части теплоносителя необходим перепускной клапан для отопления.

    Читайте также:
    Как подобрать инструменты для натяжных потолков?

    Конструкция перепускного клапана отопления

    Принцип работы этого компонента прост – на седло байпасного клапана в системе отопления постоянно воздействует давление теплоносителя. Когда усилие пружины будет меньше, чем внешний напор – происходит смещение штока и вывод некоторой части горячей воды. После стабилизации давления седло возвращается в исходное положение.

    Есть два вида регулирующих клапанов отопления – с постоянным значением давления срабатывания и возможностью ручной установки этого параметра. Для автономных систем теплоснабжения рекомендована установка второго типа, так как их можно адаптировать под любые параметры.

    Клапан давления для отопления выполняет следующие функции:

    • Уменьшает гидравлическую нагрузкуна циркуляционный насос;
    • Предотвращает появление ржавчины. При превышении температуры происходит выделение кислорода. Он является основной причиной окисления металлических компонентов отопления;
    • Снижает уровень шума теплоснабжения. Без клапана давления для отопления может увеличиться циркуляция воды и как следствие – повысится вибрация и шум.

    Этот элемент устанавливается только для закрытых систем. В гравитационном отоплении клапан давления для теплоснабжения не нужен. В случае превышения температурного режима расширение теплоносителя компенсируется с помощью открытого расширительного бака.

    Байпасный клапан в системе теплоснабжения входит в обязательную комплектацию группы безопасности. Также он устанавливается в самой высокой точке схемы и на ответственных участках.

    Виды регулировочных клапанов для отопления

    Нормальная работа теплоснабжения невозможна без минимального набора регулирующих клапанов. Они предназначены для стабилизации параметров отопления и изменения их значений в зависимости от выставленных настроек.

    Типы регулировочных клапанов

    Принцип работы редукционных клапанов системы отопления основан на ограничении притока теплоносителя путем изменения сечения трубопровода. Для этого в конструкции есть регулировочная головка и запорная арматура. Перепускные клапана для теплоснабжения разделяются на следующие виды:

    • С ручной регулировкой потока;
    • С механической термоголовкой. При температурном воздействии на термический элемент происходит его расширение и давление на седло клапана. В результате этого шток опускается, ограничивая приток теплоносителя;
    • С сервоприводом. Для работы этого типа регулирующего клапана теплоснабжения управляющий элемент подключается к блоку управления (программатору) или термодатчику. При получении управляющей команды с помощью сервомеханизма изменяется положение штока и как следствие – регулируется объем притока теплоносителя.

    Эти типы редукционных клапанов систем теплоснабжения позволяет изменять основной параметр – температурный режим работы. Установка регуляторов осуществляется в обвязке радиаторов, батарей, в коллекторных узлах теплого пола.

    Монтаж регулировочного клапана нужно осуществлять таким образом, чтобы исходящее тепло от батарей не воздействовало на термоэлемент.

    Назначение балансировочного клапана в отоплении

    Еще одной разновидностью контролирующей арматуры является балансировочный клапан в системе отопления. Конструктивно он схож с регулировочным, но имеет ряд особенностей эксплуатации и монтажа.

    Балансировочный клапан отопления

    Назначение балансировочного клапана для отопления – регулирование объема теплоносителя в зависимости от значения его температуры. Их установка является необязательной для систем с небольшой протяженностью или без проблем с тепловым распределением. Они монтируются на каждый контур отопления.

    После монтажа запорного клапана на отопление улучшатся следующие показатели теплоснабжения:

    • Равномерное распределение тепла по всем отопительным контурам;
    • Обеспечение гидравлической стабилизации системы, отсутствие резкого перепада давления;
    • Снижение затрат на отопление – оптимизируется расход топлива, стабилизируется тепловой режим работы;
    • После установки балансировочного клапана в систему отопления появляется возможность частично или полностью отключать отдельные контуры от общего теплоснабжения.

    Для осуществления контроля текущих показаний давления температуры в конструкции клапана предусмотрены штуцеры для установки термометром или манометров. В зависимости от конструкции регулировка потоков теплоносителя выполняется в ручном или автоматическом режиме.

    Балансировочные клапана монтируются в коллекторных системах частных домов или в двухтрубном отоплении многоквартирного жилого здания.

    Защитные отопительные клапаны

    Помимо перепускного клапана отопления для нормальной работы системы необходим монтаж других типов регулирующей и защитной арматуры. В процессе работы теплоснабжения может появиться избыток воздуха, произойдет обратное движение теплоносителя. Для предотвращения этих явлений следует заранее предусмотреть монтаж воздушного клапана для отопления и обратного.

    Виды защитных клапанов

    В зависимости от функционального назначения существует два вида защитных клапанов – для удаления воздуха из системы и предотвращения обратного движения воды в трубах. Без этих элементов работа системы может быть нестабильна, что приведет к нарушению температурного режима, дестабилизации давления и созданию аварийных ситуаций.

    Установка защитных клапанов выполняется на следующих участках системы:

    • В местах с наибольшей вероятностью появления избыточного давления – после котлов, циркуляционных насосов, на коллекторах;
    • На обратной трубе в обязательном порядке монтируется шариковый клапан отопления или его лепестковый аналог. Также необходима установка этого компонента в обвязке циркуляционного насоса;
    • В самой высокой точке схемы — для удаления воздуха из системы. На радиаторы и батареи устанавливается кран Маевского.

    Защитные клапана не должны ухудшать показатели работы отопительной системы. В первую очередь они устраняют возможные сбои в работе теплоснабжения. В «неактивном» состоянии эти компоненты системы не должны ухудшать скорость движения теплоносителя, влиять на температурный режим.

    Для предотвращения резкого перепада давления в узле подпитки необходим монтаж спускной клапан отопления. Он предотвратит резкий скачек давления.

    Воздушный клапан отопления

    Во время работы теплоснабжения в трубах и радиаторах могут образовываться воздушные пробки. Причиной этому является большое содержание кислорода в воде, значение температуры теплоносителя свыше +100°С. В результате происходит окисление металлических компонентов, изменяется температурное распределение. Во избежание этих ситуаций необходима установка клапанов для стравливания воздуха из системы отопления.

    Принцип работы воздушного клапана

    В первую очередь воздушный клапан для теплоснабжения монтируется в группе безопасности вместе со спускным и манометром. В схеме отопления они располагаются на прямой ветке, ведущей от котла. В этом месте наиболее высокая температура теплоносителя, а также максимальные показатели давления. В коллекторной схеме обязателен монтаж спускных клапанов теплоснабжения на каждой гребенке.

    Воздухоотводчики разделяются на два вида, каждый из которых предназначен для монтажа на определенных участках системы:

    • Кран Маевского. Устанавливается в радиатор (батарею) и нужен для удаления воздушных пробок;
    • Автоматический воздухоотводчик. Монтируется в самой высокой точке системы, а также в группах безопасности. Через него выходит воздух из системы отопления.

    Для последней модели важно соблюдать условия эксплуатации. После долгого простоя велика вероятность, что некоторые подвижные компоненты «залипнут» и тогда воздухоотводчик не сработает. Во избежание этого следует регулярно проводить осмотр конструкции и в случае надобности – заменять на новую.

    Большинство моделей клапана для стравливания воздуха из системы теплоснабжения рассчитаны для давления от 0,5 до 7 бар.

    Обратный клапан отопления

    В гравитационных системах и в схемах отопления без циркуляционного насоса всегда есть вероятность изменения направления движения воды. В этом случае возможно повреждение теплообменника котла из-за перегрева, а также выхода из строя других компонентов. Для предотвращения подобных ситуаций монтируется обратный клапан.

    Читайте также:
    Как лить чугун в домашних условиях?

    Принцип работы обратного клапана

    В больших схемах отопления устанавливают шариковый клапан теплоснабжения. Под действием обратного потока воды шар из полимера перекрывает трубопровод, тем самым предотвращая движение теплоносителя. Как только направление изменяется — он под действием гравитации опускается вниз. По такому же принципу работает электромагнитный клапан для системы отопления. Разница заключается в управляющем элементе – для этого используется соленоид или электромагнитная катушка.

    Преимущества монтажа электромагнитного клапана в системе отопления заключаются в следующем:

    • Возможность подключения к программатору;
    • Установка режима срабатывания устройства в зависимости от внешних факторов – температуры или давления;
    • Надежность работы.

    К недостаткам электромагнитных клапанов в теплоснабжении является их зависимость от подачи электроэнергии. В автономном отоплении применяется пружинный вариант обратного клапана. Напор воды постоянно действует на седло, сдавливая пружину. Как только изменится направление – произойдет автоматическое перекрытие движения теплоносителя.

    В системах с принудительной циркуляцией обратный клапан монтируется на обходную трубу насосного узла, чтобы предотвратить изменение потока жидкости в магистрали.

    Трехходовой клапан отопления

    Для регулировки температуры воды в двухтрубной и коллекторной системе устанавливается трехходовой смесительный клапан в системе отопления. Он соединяется с подающей и обратной трубой.

    Работа трехходового клапана в отоплении

    Принцип работы трехходового смесительного клапана в системе отопления заключается в смешивании горячей и холодной воды в трубопроводах. Это позволяет установить требуемый уровень нагрева теплоносителя без изменения режима работы котла.

    Определяющим фактором выбора модели трехходового клапана является управляющий элемент, который может быть следующих типов:

    • Гидравлический;
    • Пневматический;
    • Электрический.

    В автономном отоплении чаще всего устанавливают модели с электрическим приводом. Они могут подключаться к управляющим элементам системы. Важно правильно установить режим смешивания, чтобы не ухудшить параметры теплоснабжения.

    Выбор и установка отопительных клапанов должны выполняться только после точного расчета системы. В результате этой работы определяются параметры всех компонентов, и на основе этих данных делается выбор из существующих моделей.

    Для лучшего понимания функциональных особенностей трехходового клапана рекомендуется ознакомиться с видеоматериалом:

    Балансировочный клапан для настройки системы отопления

    Обычными шаровыми кранами нельзя регулировать поток воды в трубах или радиаторах. Но для правильного распределения теплоносителя по батареям такая регулировка необходима. Ручной балансировочный клапан (иначе – вентиль) как раз и служит для настройки системы водяного отопления. В публикации мы расскажем, где ставится балансовый кран и как его правильно использовать при балансировке отопительной сети частного дома.

    • 1 Зачем нужны балансировочные вентили
    • 2 Где нужно ставить клапан
    • 3 Конструкция и принцип работы
    • 4 Как отбалансировать радиаторную сеть
    • 5 Заключительный вывод

    Зачем нужны балансировочные вентили

    Сразу оговоримся, что далеко не каждая система требует балансировки как таковой. Например, 2—3 коротких тупиковых ветви с 2 батареями на каждой способны сразу включиться в нормальный рабочий режим при условии, что верно подобраны диаметры труб, а расстояния между приборами небольшие. Теперь давайте разберем 2 ситуации:

    1. К котлу подключены 2—4 ветви отопления неравной длины с числом радиаторов от 4 до 10.
    2. Тот же расклад, но с батареями, оснащенными термостатическими вентилями (описаны в другой публикации).

    Пример тупиковой схемы с плечами неравной длины и нагрузки. На последнем радиаторе короткой ветви тоже нужен балансовый вентиль

    Поскольку основная масса воды всегда течет по пути наименьшего гидравлического сопротивления, в ситуации №1 большее количество тепла получат первые отопительные приборы, расположенные близко к котлу. Если поступление теплоносителя к этим радиаторам не ограничить, то последние батареи в цепочке нагреются гораздо слабее, разница температур между ними может составить 10 °С и более.

    Чтобы направить к дальним батареям требуемое количество теплоносителя, на подводках к ближним приборам ставятся радиаторные балансировочные вентили, изображенные на фото. Они ограничивают проток воды, частично перекрывая проходное сечение труб и увеличивая гидравлическое сопротивление участка.

    Таким же образом регулируется подача теплоносителя в системах с пятью и более тупиковыми ветвями. На врезках, приближенных к теплогенератору, устанавливаются ручные балансировочные краны, предназначенные для трубопроводов. Частично перекрывая проход воде, они направляют основной поток дальше по магистрали.

    Ситуация №2 сложнее. Установка радиаторных термостатов с головками позволяет менять расход теплоносителя в автоматическом режиме по мере необходимости. Но представьте, что в ближней к котлу комнате распахнулось окно, температура воздуха упала, а терморегулятор полностью открылся. Тогда в последнем помещении тоже станет холоднее, ведь ему не хватит тепла, отнятого первой батареей.

    Задача вентилей – ограничить расход теплоносителя на стояки (или горизонтальные ветви)

    На длинных ветвях с большим числом отопительных приборов, оборудованных термоголовками, клапаны балансировочные совмещаются с автоматическими регуляторами перепада давления, как это сделано выше на схеме.

    Регуляторы, связанные капиллярными трубками с балансовыми кранами, реагируют на уменьшение/увеличение расхода воды и поддерживают давление в обратке на одном уровне. Тогда всем потребителям хватает теплоносителя, несмотря на срабатывание термоклапанов. О пользе таких регулировочных кранов подробно рассказывается в видео:

    Где нужно ставить клапан

    В большинстве частных домов используются только ручные радиаторные вентили. Их вполне достаточно, чтобы настроить нормальную работу водяного отопления в коттеджах площадью до 500 м². Монтаж балансовых кранов магистрального типа производится в таких случаях:

    • в зданиях с разветвленной отопительной сетью, состоящей из множества стояков;
    • в многоквартирных домах, обогреваемых собственной котельной;
    • при обвязке твердотопливного котла с теплоаккумулятором.

    Когда мы разобрались с назначением балансировочных вентилей, укажем конкретные места их установки. Радиаторные краны нужно ставить на выходе батарей, а магистральные – на обратной трубе с охлажденным теплоносителем. Если же элемент задействован в паре с автоматическим регулятором давления, то он может стоять как на подающем, так и обратном трубопроводе в зависимости от спроектированной схемы.

    Пример схемы с групповой балансировкой стояков

    Справка. В алюминиевых и стальных радиаторах с нижним подключением балансировочный кран встроен в специальную фурнитуру, предназначенную для присоединения подводок к таким приборам.

    Выделим моменты, когда ставить регулирующие клапаны не нужно:

    • в тупиковых системах небольшой протяженности с равными по гидравлике «плечами»;
    • если все батареи оснащены термостатическими клапанами с преднастройкой;
    • на последнем (тупиковом) радиаторе;
    • в системах отопления коллекторного типа.
    Читайте также:
    Какие шторы повесить в спальне: правила выбора и модные тенденции

    Специальная арматура для нижнего подключения оснащается встроенными балансирующими клапанами

    Терморегуляторы с преднастройкой, стоящие на подаче воды в батарею, одновременно играют роль балансового вентиля, поэтому на выходе отопительного прибора достаточно установить отсекающий шаровой кран. Такая же арматура монтируется на подводках последнего в цепочке радиатора, поскольку регулировать его бессмысленно, он должен быть открыт полностью.

    Конструкция и принцип работы

    Радиаторный кран, предназначенный для ручной балансировки отопления, состоит из таких деталей:

    1. Латунный корпус с резьбовыми патрубками для подключения труб. Внутри методом литья выполнено седло – вертикальный круглый канал, немного расширяющийся кверху.
    2. Запорно-регулирующий шпиндель с рабочей частью в виде конуса, входящего при закручивании в седло и ограничивающего поток воды.
    3. Уплотнительные кольца из резины EPDM.
    4. Защитный пластиковый или металлический колпачок.

    На рисунке представлен вентиль фирмы Caleffi (сайт – https://www.caleffi.com)

    Примечание. Все известные производители – Danfoss, Herz, Caleffi и другие – предлагают клапаны 2 типов – прямые и угловые. Принцип работы одинаковый, меняется лишь форма.

    Подробнее устройство балансировочного клапана показано выше на схеме. По ней видно, что вращение шпинделя ведет к увеличению либо уменьшению проходного сечения, так и выполняется регулировка. Число оборотов от закрытого до максимально открытого положения – от 3 до 5 в зависимости от производителя крана. Чтобы поворачивать шток, нужно использовать обычный или специальный ключ в виде шестигранника.

    Магистральные краны отличаются от радиаторных размерами, наклонным положением шпинделя и штуцерами, предназначенными для:

    • слива теплоносителя;
    • подсоединения измерительных приборов;
    • подключения капиллярной трубки от регулятора давления.

    Устройство магистрального вентиля для балансировки ветвей отопления

    Для справки. Сливным патрубком оснащаются также и радиаторные модели клапанов, например, от бренда Oventrop.

    Ассортимент балансовых кранов постоянно расширяется за счет появления новых высокотехнологичных изделий. Пример – вертикальный клапан Caleffi итальянского производства, оборудованный расходомером.

    Вентиль Caleffi с расходомером можно монтировать в 2 положениях – горизонтальном и вертикальном

    Как отбалансировать радиаторную сеть

    Обычно монтажники систем отопления устанавливают расход теплоносителя на батареях простым способом: делят число оборотов балансировочного вентиля на количество отопительных приборов и таким способом рассчитывают шаг регулировки. Двигаясь от последнего радиатора к первому, закрывают краны с полученной разницей в оборотах.

    Пример. Имеем на одном «плече» тупиковой системы 5 радиаторов с ручными клапанами Oventrop на 4.5 оборота шпинделя. Делим 4.5 на 5, получаем шаг регулировки около 0.9 оборота. Значит, предпоследний отопительный прибор открываем на 3.6 оборота, третий – на 2.7, второй – на 1.8, первый – на 0.9 оборота.

    Способ довольно приблизительный и не учитывает различную мощность батарей, а потому может применяться в качестве предварительной настройки с корректировкой в процессе эксплуатации.

    Точнее отбалансировать отопление поможет контактный термометр, измеряющий температуру поверхности труб и батарей

    Наш опытный эксперт Владимир Сухоруков предлагает другую методику, базирующуюся на измерении реальной температуры поверхности обогревателей. Пошагово инструкция по балансировке выглядит так:

    1. Максимально откройте все балансировочные клапаны и выведите систему в рабочий режим с температурой подачи 80 °С.
    2. Контактным термометром замерьте температуру всех отопительных приборов.
    3. Полученную разницу устраняйте, закручивая краны первых и средних радиаторов, конечные не трогайте. Ближнюю батарею откройте на 1—1.5 оборота вентиля, средние – на 2—2.5.
    4. Дайте системе адаптироваться под новые настройки в течение 20 минут и повторите замеры. Ваша задача – добиться минимальной температурной разницы между дальней и ближайшей к котлу батареей.

    Примечание. Погода и температура на улице не играет роли, важна лишь разница в нагреве радиаторов. Кстати сказать, в обычном рабочем режиме при 50—70 °С на подаче дельта температур станет еще меньше. Как система гидравлически уравновешивается с помощью балансировочных вентилей, смотрите на видео от эксперта:

    Заключительный вывод

    Если вы самостоятельно занимаетесь монтажом отопления, то наверняка столкнетесь с балансировкой. Когда на всех радиаторах, кроме последнего, стоят балансировочные клапаны, процедура не доставит больших хлопот. Лучше брать вентили, регулируемые ключом либо отверткой, а не пластиковой рукояткой, чтобы до них не добрались дети. Не исключено, что зимой положение шпинделей придется корректировать, ведь теплопотери в помещениях бывают разными. Единственный нюанс: не делайте резких движений и открывайте краны в холодных комнатах потихоньку, по ¼ оборота.

    Клапаны на систему отопления: назначение и применение

    Клапаны являются неотъемлемыми элементами любой системы отопления (СО), независимо от выбранной схемы и конфигурации контуров. С помощью этих нехитрых приспособлений производится настройка параметров теплоснабжения, обеспечение безопасности и стабильности работы системы. В этой публикации будут рассмотрены основные клапаны, применяющиеся в системах централизованного и автономного отопления, их назначение, принцип работы и конструктивные особенности.

    1. Критерии выбора
    2. Предохранительный
    3. Воздухоотводчик
    4. Обратный
    5. Балансировочный
    6. Перепускной
    7. Трехходовой
    8. Устройство автоматической подпитки

    Критерии выбора

    Количество и параметры клапанов, необходимых для конкретной СО, выбирается еще на стадии расчетов и проектирования. Основными критериями, которые влияют на выбор данных элементов являются:

    • Тип, схема и конфигурация СО.
    • Температурный режим (номинальный и максимальный).
    • Давление в системе (рабочее и максимальное).
    • Сечение трубопровода и тип резьбы.
    • Тип теплоносителя (вода, рассолы, антифризы).

    Работа данных приборов стабилизирует СО, делает ее эффективной и безопасной. Всем кто занимается самостоятельной установкой в жилище отопительной системы необходимо знать назначение и их принцип действия. Все клапаны можно разделить по назначению на три категории: группа безопасности, управления и регулирования.

    Всем известно, что любая СО является повышенным источником опасности, так как теплоноситель в системе находится под давлением. И чем выше температура – тем выше давление (в замкнутой СО). Далее, рассмотрим устройства, которые отвечают за безопасность работы СО

    Предохранительный

    В большинстве моделей современных котлоагрегатов производители предусматривают систему безопасности, «ключевой фигурой» которой является предохранительная арматура, включенная прямо в теплообменник котла или в его обвязку.

    Назначение предохранительного клапана в системе отопления заключается в предотвращении повышения давления в системе выше допустимого, которое может привести: к разрушению труб и их соединений; протечкам; взрыву котельного оборудования

    Конструкция данного рода арматуры проста и незатейлива. Прибор состоит из латунного корпуса, в котором размещена подпружиненная запирающая мембрана, соединенная со штоком. Упругость пружины является главным фактором, который удерживает мембрану в запертом положении. Регулировочной рукояткой производится настройка силы сжатия пружины.

    При давлении на мембрану выше установленного, пружина сжимается, она открывается и происходит сброс давления через боковое отверстие. Когда давление в системе не сможет преодолевать упругость пружины, мембрана займет исходное положение.

    Совет: Приобретайте предохранительное устройство с регулировкой давления от 1, 5 до 3,5 Бар. В это диапазон попадает большинство моделей твердотопливного котельного оборудования.

    Воздухоотводчик

    Достаточно часто В СО образуются воздушные пробки. Как правило, у их появления есть несколько причин:

    • закипание теплоносителя;
    • большое содержание воздуха в теплоносителе, автоматически добавляющегося напрямую из водопровода;
    • В результате подсоса воздуха через негерметичные соединения.
    Читайте также:
    Как сделать волшебную палочку

    Результатом воздушных пробок является неравномерный прогрев радиаторов и окисление внутренних поверхностей металлических элементов СО. Клапан сброса воздуха из системы отопления предназначен для отвода воздуха из системы в автоматическом режиме.

    Конструктивно, воздухоотводчик представляет собой полый цилиндр, выполненный из цветного металла, в котором расположен поплавок, соединенный рычагом с игольчатым клапаном, который в открытом положении соединяет камеру воздушника с атмосферой.

    В рабочем состоянии внутренняя камера устройства заполнена теплоносителем, поплавок поднят, а игольчатый клапан перекрыт. При попадании воздуха, который поднимается в верхнюю точку устройства, теплоноситель не может подняться в камере до номинального уровня, а следовательно, поплавок опущен, прибор работает в выпускном режиме. После выхода воздуха, теплоноситель поднимается в камере данного рода арматуры до номинального уровня, а поплавок занимает штатное место.

    Обратный

    В самотечный СО есть условия, при которых теплоноситель может поменять направление движения. Это грозит повреждением теплообменника теплогенератора вследствие его перегрева. То же может случиться и в достаточно сложных СО с принудительным перемещением теплоносителя, когда вода, через обходную трубу насосного узла попадает обратно в котел. Механизм действия обратного клапана в системе отопления достаточно прост: он пропускает теплоноситель только в одну сторону, блокируя его при движении обратно.

    Существует несколько типов данного рода арматуры, которая классифицируется по конструкции запирающего устройства:

    • тарельчатый;
    • шаровый;
    • лепестковый;
    • двустворчатый.

    Как уже понятно из названия, в первом типе в качестве запирающего устройства выступает стальной подпружиненный диск (тарелка), соединенная со штоком. В шариковом в качестве затвора выступает пластиковый шарик. Двигаясь «в правильном» направлении теплоноситель выталкивает шарик по каналу в корпусе или под крышку устройства. Как только прекращается циркуляция воды или меняется направление ее движения, шарик, под действием гравитации занимает исходное положение и перекрывает движение теплоносителя.

    В лепестковом, запирающим устройством является подпружиненная крышка, которая опускается при изменении направления воды в СО под действием естественной гравитации. Двустворчатый элемент устанавливается (как правило) на трубы большого диаметра. Принцип их работы не отличается от лепесткового. Конструктивно, в такой арматуре, вместо одного лепестка, подпружиненного сверху, устанавливается две подпружиненные створки.

    Данные приборы предназначены для регулировки температуры, давления, а также стабилизации работы СО.

    Балансировочный

    Любая СО требует гидравлической регулировки, другими словами — балансировки. Выполняется она различными способами: правильно подобранным диаметром труб, шайбами, с разным проходным сечением и пр. Наиболее эффективным и в то же время простым элементом настройки работы СО считается балансировочный клапан для системы отопления.

    Назначение данного устройства в том, чтобы на каждое ответвление, контур и радиатор поддавался необходимый объем теплоносителя и количество тепла.

    Клапан представляет собой обычный вентиль, но с установленными в его латунный корпус двумя штуцерами, которые дают возможность подключения измерительного оборудования (манометров) или капиллярной трубки в составе с автоматическим регулятором давления.

    Принцип работы балансировочного клапана для системы отопления заключается в следующем: Оборотами регулировочной рукоятки необходимо добиться строго определенного расхода теплоносителя. Делается это замерами давления на каждом штуцере, после чего по диаграмме (обычно прилагаемой производителем к устройству) определяется количество поворотов регулировочной рукоятки для достижения нужного расхода воды на каждый контур СО. На контуры с количеством радиаторов до 5 шт устанавливают ручные балансировочные регуляторы. На ветки с большим количеством отопительных приборов – автоматические.

    Перепускной

    Это еще один элемент СО, предназначенный для выравнивания давления в системе. Принцип работы перепускного клапана системы отопления сходен с предохранительным, но есть одно отличие: если предохранительный элемент стравливает излишки теплоносителя из системы, то перепускной, возвращает его в обратную магистраль мимо отопительного контура.

    Конструкция данного устройства также идентична предохранительным элементам: пружина с регулируемой упругостью, запорная мембрана со штоком в бронзовом корпусе. Маховиком настраивается давление, при котором данное устройство срабатывает, мембрана открывает проход для теплоносителя. При стабилизации давления в СО, мембрана возвращается на прежнее место.

    Трехходовой

    Существует практика добиваться определенной температуры теплоносителя в различных ветках и контурах СО методом смешивания или разделения потоков теплоносителя. Трехходовой клапан на системе отопления играет роль устройства, регулирующего температуру рабочей жидкости после теплогенератора.

    Конструкция смесительной арматуры проста: в корпусе прибора есть три отверстия, два входа и один выход. Приборы разделительного типа имеют один вход и два выхода.

    Основным управляющим устройством данного элемента является термоголовка, внутри которой расположен резервуар с жидкостью (сильфон). При нагреве выносного датчика жидкость в нем расширяется и поступает в сильфон. Объем данного резервуара увеличивается и оказывает воздействие на шток клапана, который открывает или перекрывает входы для смешивания или разделения потоков. В разделительных типах данного элемента СО используется тот же принцип, но шток не открывает проход для потоков, а разделяет один поток на два.

    Управлять прибором может не только термостатическая головка. Достаточно популярны устройства с ручным управлением. Глубину нажатия штока определяет поворот управляющей рукоятки. Сегодня, на рынке климатической техники широко представлены данные устройства с электро – и сервоприводами.

    Устройство автоматической подпитки

    В силу различный обстоятельств (естественное испарение, работа предохранительного элемента и пр.), объем теплоносителя в СО может уменьшаться. Чем меньше теплоносителя – тем больше воздуха в системе, который неизбежно нарушает циркуляцию воды в СО и перегреву котельного оборудования. Чтобы воздух не поступал в систему необходимо вовремя пополнять количество теплоносителя. Делать это можно вручную, а можно установить клапан подпитки системы отопления, тем самым организовать автоматическое пополнение СО теплоносителем.

    Конструкция данного рода арматуры практически не отличается от предохранительной арматуры, но принцип работы прямо противоположный: пока в СО есть необходимое давление, которое подпирает мембрану к седлу, пружина находится в сжатом состоянии. Когда давление падает ниже минимального, пружина распрямляется и отводит мембрану от седла, давая возможность поступлению воды из бака запаса или водопроводной сети попасть в СО. На рис. ниже показана конструкция данного устройства.

    По мере заполнения СО, давление в ней усиливается, пружина сжимается, а мембрана садится в седло на корпусе, перекрывая подпитку.

    Важно! Выбор клапанов – это сложный и важный процесс, который лучше всего доверить профессионалам.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: