Материал для изоляции труб отопления

Поэтапная изоляция трубопроводов

Теплоизоляция трубопроводов — это комплекс мероприятий, направленных на то, чтобы воспрепятствовать теплообмену транспортируемого по ним носителя с окружающей средой. Тепловая изоляция трубопроводов применяется не только в системах отопления и поставки горячей воды, но и там, где по технологии требуется транспортировка веществ с какой-то определенной температурой, например, хладагентов.

Смысл теплоизоляции – использование средств, оказывающих термическое сопротивление теплообмену любого рода: контактному и осуществляемому посредством инфракрасного излучения.

Наибольшее применение, выраженное в числах, имеет тепловая изоляция трубопроводов тепловых сетей. В отличие от Европы, централизованная система отопления господствует на всем постсоветском пространстве. Только в одной лишь России суммарная протяженность теплосетей составляет более 260 тыс. километров.

Значительно реже изоляция для труб отопления находит применение у частных домовладений, имеющих автономную систему отопления. Лишь в нескольких северных регионах частные дома подключаются к центральной теплотрассе с размещением труб отопления на улице.

Некоторым типам котлов, к примеру, мощным газовым или дизельным, требованиями свода правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов» предписано отдельное от здания размещения – в котельной, отстоящей от обогреваемого объекта на несколько метров. В их случае фрагмент обвязки, проходящий через улицу, обязательно нуждается в утеплении.

Способы прокладки труб

На улице изоляция трубопроводов отопления требуется и при открытом наземном размещении, и при скрытой прокладке – под землей. Последний способ бывает канальным – в траншею сперва укладывается железобетонный желоб, а в нем уже размещаются трубы. Бесканальный способ размещения – непосредственно в грунте. Применяемые изоляционные материалы различаются не только по теплопроводности, но и паро-, водонепроницаемости, долговечности и способам монтажа.

Не столь очевидна необходимость утепления труб холодного водоснабжения. Однако без нее не обойтись в том случае, когда водопровод проложен открытым наземным способом — трубы требуется защищать от промерзания и последующего повреждения. Но и внутри зданий изолировать трубы водопровода тоже приходится –- для предотвращения конденсации влаги на них.

Стекловата, минеральная вата

Проверенные практикой эксплуатации изоляционные материалы. Отвечают требованиям СП 61.13330.2012, СНиП 41-03-2003 и нормам пожарной безопасности при любом способе прокладки. Представляют собой волокна диаметром 3-15 мкм, по структуре близкие к кристаллам.

Стекловата изготавливается из отходов стекольного производства, минвата из кремнийсодержащих шлаков и силикатных отходов металлургии. Различия их свойств незначительны. Выпускаются в виде рулонов, прошивных матов, плит и опрессованных цилиндров.

С материалами важно соблюдать осторожность и уметь правильно обращаться. Любые манипуляции должны выполняться в защитном комбинезоне, перчатках и респираторе.

Монтаж

Трубу оборачивают или обкладывают ватой, обеспечивая равномерную плотность заполнения по всей поверхности. Затем изоляцию, не слишком передавливая, фиксируют с помощью вязальной проволоки. Материал гигроскопичен и легко намокает, поэтому изоляция наружных трубопроводов из минеральной или стеклянной ваты требует установки пароизоляционного слоя из материала с низкой паропроницаемостью: рубероида или полиэтиленовой пленки.

Поверх него размещается покровный слой, препятствующий проникновению осадков – кожух из кровельной жести, оцинкованного железа или листового алюминия.

Базальтовая (каменная) вата

Более плотная, чем стекловата. Волокна изготавливаются из расплава габбро-базальтовых пород. Абсолютно негорюча, кратковременно выдерживает воздействие температур вплоть до 900° C. Далеко не любые изоляционные материалы могут как базальтовая вата длительно контактировать с поверхностями, нагретыми до 700°С.

Теплопроводность сопоставима с полимерами, варьируется от 0,032 до 0,048 Вт/(м·K). Высокие эксплуатационные показатели позволяют использовать ее теплоизоляционные свойства не только для трубопроводов, но и при обустройстве горячих дымоходов.

Выпускается в нескольких вариантах:

  • как и стекловата, рулонами;
  • в форме матов (прошитых рулонов);
  • в виде цилиндрических элементов с одной продольной прорезью;
  • в виде прессованных фрагментов цилиндра, так называемых скорлуп.

Последние два исполнения имеют разные модификации, отличающиеся плотностью и наличием теплоотражающей пленки. Прорезь цилиндра и края скорлуп могут быть выполнены в виде шипового соединения.

СП 61.13330.2012 содержит указание о том, тепловая изоляция трубопроводов обязана соответствовать требованиям безопасности и защиты окружающей среды. Сама по себе базальтовая вата этому указанию соответствует в полной мере.

Производители часто прибегают к хитрости: чтобы улучшить потребительские показатели – придать ей гидрофобность, большую плотность, паропроницаемость они используют пропитки на основе фенолоформальдегидных смол. Поэтому 100% безопасной для человека ее назвать нельзя. Перед применением базальтовой ваты в жилом помещении желательно изучить ее гигиенический сертификат.

Монтаж

Волокна утеплителя прочнее, чем у стекловаты, поэтому попадание его частиц в организм через легкие или кожу почти исключено. Однако при работах все же рекомендуется использовать перчатки и респиратор.

Монтаж рулонного полотна не отличается от того способа, каким осуществляется изоляция труб отопления стекловатой. Теплозащита в виде скорлуп и цилиндров крепится на трубы с помощью монтажного скотча или широкого бандажа. Несмотря на некоторую гидрофобность базальтовой ваты, на изолированные с ее помощью трубы также требуется гидрозащитная паропроницаемая оболочка из полиэтилена или рубероида, и дополнительная, из жести либо плотной алюминиевой фольги.

Вспененный полиуретан (пенополиуретан, ППУ)

Более чем в два раза сокращает тепловые потери по сравнению со стекловатой и минеральной ватой. К числу его преимуществ относят: низкую теплопроводность, отличные гидроизоляционные свойства. Заявляемый производителями срок службы – 30 лет;. Диапазон рабочей температуры от -40 до +140 °С, максимальная выдерживаемая в течении короткого времени – 150 °С.

Читайте также:
Классификация запорных клапанов

Основные марки ППУ относятся к группе горючести Г4 (сильногорючие). При изменение состава с помощью добавки антипиренов им присваивается Г3 (нормальногорючие).

Хотя пенополиуретан отлично подходит как изоляционный материал для труб отопления, имейте ввиду, что СП 61.13330.2012 разрешает применение подобной теплоизоляции только в одноквартирных жилых домах, а СП 2.13130.2012 ограничивает их высоту двумя этажами.

Теплоизоляционное покрытие выпускается в виде скорлуп – полукруглых сегментов со шпунтовыми замками на торцах. В продаже имеются и готовые стальные трубы в изоляции из пенополиуретана с предохраняющей оболочкой из полиэтилена.

Монтаж

Скорлупы закрепляются на отопительной трубе с помощью стяжек, хомутов, пластикового или металлического бандажа. Как и многие полимеры, материал не переносит длительного воздействия солнечного света, поэтому открытый наземный трубопровод при использовании ППУ-скорлуп нуждается в покровном слое, к примеру, из оцинкованной стали.

Для подземного бесканального размещения теплоизоляционные изделия укладывают на водостойких и температусточивых мастиках либо клеях, а снаружи изолируют водонепроницаемым покрытием. Необходимо также позаботиться об антикоррозионной обработке поверхности металлических труб – даже проклеенное замковое соединение скорлуп недостаточно плотно, чтобы предотвратить конденсацию водяного пара из воздуха.

Пенополистирол (пенопласт, ППС)

Выпускается в виде скорлуп, внешне практически не отличающихся от пенополиуретановых – те же размеры, такое же замковое соединение «шип-паз». Но диапазон температуры применения, от -100 до +80 °С, при всей этой внешней схожести делает невозможным или ограниченным его применение для тепловой изолировки трубопровода отопления.

В СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» указано, что в случае двухтрубной системы теплоснабжения максимальная температура подачи может достигать 95°С. Что же касается обратных стояков отопления, то здесь не все так однозначно: считается, что в них температура не превышает 50 °С.

Утепление пенопластом чаще используется для труб холодного водопровода и канализации. Однако он может быть использован поверх других утеплителей с более высокой допустимой температурой применения.

Материалу присущ ряд некоторых недостатков: сильногорюч (даже с добавкой антипиренов), плохо переносит химические воздействия (растворяется в ацетоне), осыпается шариками при длительном воздействии солнечного излучения.

Существуют и другие, не полистирольные пенопласты – формальдегидные, или коротко, фенольные. По сути это совершенно другой материал. Он лишен указанных недостатков, успешно применяется как теплоизоляция трубопроводов, но не настолько широко распространен.

Монтаж

Скорлупы закрепляются на трубе с помощью бандажа либо фольгированным скотчем, допускается приклеивание их к трубе и между собой.

Вспененный полиэтилен

Диапазон температур, при которых допускается применение вспененного полиэтилена высокого давления, от -70 до +70 °С. Верхняя граница не сочетается с максимальной температурой трубы отопления, обычно принимаемой при расчетах. Это значит, что как тепловая изоляция трубопроводов материал малопригоден, но может использоваться в роли изолирующего слоя поверх жаростойкого.

Пенополиэтиленовая изоляция нашла практически безальтернативное применение в качестве защиты от промерзания труб водопроводных. Очень часто она используется как пароизоляция и гидроизоляция.

Выпускается материал в виде листов либо в виде гибкой толстостенной трубы. Последняя форма чаще применяется, так как более удобна для утепления водопровода. Стандартная длина – 2 метра. Цвет варьируется от белого до темно-серого. Возможно наличие покрытия из алюминиевой фольги, отражающей ИК излучение. Различия касаются внутренних диаметров (от 15 до 114 мм), толщины стенок (от 6 до 30 мм).

Применение обеспечивает температуру на трубе выше точки росы, а значит препятствует появлению конденсата.

Монтаж

Простой путь с худшими пароизоляционными результатами – разрезать пенистый материал по небольшому углублению вдоль боковой поверхности, раскрыть кромки и одеть на трубу. Затем обмотать по всей длине монтажным скотчем.

Более сложное решение (и далеко не всегда осуществимое) – перекрыть воду, полностью разобрать утепляемые участки водопровода и надеть цельные отрезки. Затем собрать все обратно. Полиэтилен закрепить стяжками. В этом случае уязвимым местом станется только стык отрезков. Его можно склеить либо также замотать скотчем.

Вспененный каучук

Вспененный синтетический каучук с закрытопористой структурой – наиболее универсальный материал для сохранения тепла и холода. Рассчитан на диапазон температур от -200 до +150 °С. Соответствует всем требованиям экологической безопасности.

Применяется как изоляция трубопроводов холодной воды, изоляция труб отопления, часто встречается в холодильных системах и системах вентиляции. Трубы для отопления, проложенные внутри зданий и изолированные каучуком, не требуют установки пароизоляционного слоя.

Внешне похож на вспененный полиэтилен, выпускается также в виде листов и гибких толстостенных труб. Монтаж тоже практически не отличается, за исключением того, что такая тепловая изоляция труб может крепиться на клей.

Жидкие утеплители

Успешно применяется технология, которая позволяет самостоятельно напылять пену из полиуретанового состава на уже готовые конструкции. Отличные адгезионные свойства позволяют использовать его не только для изоляции трубопроводов, но и наносить на прочие элементы, нуждающиеся в утеплении: фундамент, стены, кровлю. Покрытие, помимо теплозащиты, обеспечивает гидро, пароизоляцию, обеспечивает антикоррозионную устойчивость.

Заключение

Правильно выполненный монтаж тепловой изоляции — залог того, что труба не потеряет тепло, а потребитель не замерзнет. Замерзание же трубопровода холодного водоснабжения неизменно приводит к его разрыву. Вплоть до последнего времени на скрытых и открытых теплотрассах обычными изоляционным материалом была стекловата. Ее недостатки проистекают один из другого. Такое покрытие требует постоянного контроля.

Читайте также:
Как сделать хомутатель с электрическим приводом

Даже при незначительном повреждении защищающего поверхностного слоя паропроницаемость и гигроскопичность сводят всю экономию на нет. Влага является причиной низкого термического сопротивления и преждевременного разрушения. Значительно улучшить ситуацию помогут современные изоляционные материалы с ячеистой структурой, инертные к воздействию пара и воды: пенополиуретан, вспененный каучук, пенополиэтилен.

Построил тысячи многоэтажных домов, знает практически все о теплоизоляции и шумоизоляции. Всегда рад отвечать на ваши вопросы по данным темам.

Теплоизоляция труб отопления и ГВС

Защищать от холода необходимо не только строительные конструкции, но и инженерные коммуникации. Правильное утепление труб отопления уменьшает потери тепла, снижает риск промерзания, если циркуляция горячей воды прекратилась на длительное время из-за аварий и ремонта. Расход топливно-энергетических ресурсов увеличивается вместе с ежемесячными коммунальными платежами.

Требования к теплоизоляции труб отопления

Технические требования к теплоизоляции трубопроводов устанавливают СП 61.13330. В процессе эксплуатации она подвергается воздействиям разного характера — механическим, химическим, термическим, влажностным, поэтому должна быть не только энергоэффективна, но и надежна, долговечна, безопасна.

Характеристики материалов, которые учитывают при выборе:

  • Теплопроводность, плотность — определяют толщину слоя утеплителя, нагрузку на трубу, ее опоры.
  • Термостойкость — обуславливает неизменность первоначальных свойств при контакте с горячей поверхностью.
  • Упругость, прочность на сжатие — отвечают за стабильность формы и структуры при слеживании, прокладке в грунте.
  • Водостойкость — исключает впитывание воды, позволяет сохранять теплоизоляционные свойства.
  • Биостойкость, стойкость к воздействию агрессивных сред — важны для длительной эксплуатации.
  • Горючесть, содержание вредных веществ — должны отвечать санитарно-гигиеническим требованиями, нормам пожарной безопасности.

С практической точки зрения значение имеет удобный, простой монтаж. Он экономит время, избавляет от дополнительных трат на материалы для установки.

Функции изоляционных материалов

Трубопроводы теплосетей утепляют при любых способах прокладки — подземной и надземной на улице, в технических помещениях многоквартирных, частных домов, промышленных, общественных зданий. Задачи материалов и конструкций не зависят от расположения коммуникаций.

Тепловая изоляция для труб отопления должна:

  • Сохранять температуру теплоносителя для обеспечения комфорта в жилых, рабочих помещениях.
  • Сокращать теплопотери в трубопроводе, поддерживать их на допустимом уровне, снижать расходы топлива или энергии.
  • Обеспечивать безопасность при контакте с поверхностью, так как температура горячей воды в трубах достигает 1050С.
  • Защищать систему от промерзания, коррозии, деформаций, повреждений, продлевать срок её безремонтной службы.

Грамотно выбранная и установленная изоляция выполняет все функции на протяжении расчетного срока эксплуатации.

Виды материалов для теплоизоляции труб отопления

Технические решения изоляции труб различаются конструктивно, материалами и характеристиками.

Минеральная вата

Техническая изоляция из каменной ваты базальтовых пород для утепления высокотемпературных трубопроводов выпускается в навивных цилиндрах, плитах и матах, в том числе с односторонним фольгированием. Она химически инертна, биостойка, негорюча, имеет теплопроводность порядка 0,04 Вт/м*К и плотность 100-150 кг/м3.

Материалы эффективны, доступны по цене, но имеют недостатки. Использование минераловатной изоляции для утепления труб отопления на чердаках, в подвалах, технических подпольях ограничено из-за повышенной влажности. Склонность к слеживанию, впитывание влаги приводят к нарушению структуры, намоканию, быстрому ухудшению теплозащитных свойств.

Пенопласт и пенополистирол

Теплоизоляционные материалы из экструзионного пенополистирола и пенопласта изготавливают в виде плит, сегментов в форме полуцилиндров. Они используются для защиты внутридомовых теплопроводов, сборки закрытого или П-образного короба при прокладке трубопровода в грунте.

Изоляция имеет плотность 35-40 кг/м3, коэффициент теплопроводности около 0,035-0,04 Вт/м*К и низкое водопоглощение, не подвержена гниению, удобна в монтаже. К минусам можно отнести горючесть, узкий диапазон рабочих температур от -600 до +750С. Трубы необходимо обрабатывать антикоррозийным составом перед монтажом в грунте, при открытой прокладке нужно защищать утеплитель от УФ-лучей.

Пенополиуретан

Для утепления труб отопления используются скорлупы ППУ с фольгированным покрытием и без него. Материал отличается низкой теплопроводностью 0,022-0,03 Вт/м*К и водопоглощением за счет закрытой ячеистой структуры, высокой прочностью, длительным сроком службы, не подвержен гниению, быстро монтируется. Скорлупы без покрытия применяются только в помещениях, так как пенополиуретан разрушается под воздействием УФ-лучей.

Утепление трубопроводов большого диаметра может выполнятся с помощью напыляемой пенополиуретановой изоляции. Она имеет повышенную плотность и огнестойкость, значительно сокращает теплопотери благодаря сплошному покрытию без «мостиков холода».

Вспененный синтетический каучук

Каучуковая техническая теплоизоляция производится в рулонах и трубках. Она негорюча, экологически безопасна, стойка к химическим, биологическим воздействиям, имеет плотность 65 кг/м3 и теплопроводность 0,04-0,047 Вт/м*К.

Материалы используются для утепления трубопроводов в помещениях, прокладываемых надземным и подземным способом, могут иметь алюминизированное покрытие для защиты от механических повреждений, УФ-лучей. Основной недостаток — высокая стоимость.

Вспененный полиэтилен

Теплоизоляция для труб отопления из вспененного полиэтилена с упругой пористой структурой используется в любых условиях, не впитывает воду, сохраняет низкую теплопроводность 0,032 Вт/м*к при изменениях температуры. Она выпускается в формате трубок, рулонов, матов, легко и быстро устанавливается.

Материал применяется в помещениях, тепловых пунктах, при прокладке труб на открытом воздухе, в грунте. При надземном монтаже необходимо предусмотреть покровный слой, при подземном — кожух.

Сравнение характеристик утеплителей труб отопления

Таблица 1. Сравнительная таблица характеристик разных утеплителей для труб отопления и ГВС
Характеристики Минеральная вата Пенополистирол Пенополиуретан Вспененный каучук Вспененный полиэтилен
Теплопроводность, Вт/м*К 0,04 0,035-0,04 0,022-0,03 0,038-0,045 0,032
Плотность, кг/м3 105-135 35-40 60 65 35
Водопоглощение, % 10-15 4 1-2 0,6 0,6
Температура применения, С0 От -180 до +680 От -60 до +75 От -180 до +140 От -60 до +105 От -80 до +100
Простота монтажа Может требовать намотки, фиксации стяжками, проволочными кольцами Склеивается, стягивается крепежными бандажами или собирается в короб Надевается на трубу, фиксируется термолентой Фиксируется на клей или с помощью зажимов Крепится с помощью клея, скотча
Химическая и биостойкость высокая высокая высокая высокая высокая
Горючесть НГ Г3-Г4 Г2-Г4 Г1 Г1
Читайте также:
Как использовать светлый ламинат в интерьере

Преимущества применения вспененного полиэтилена для теплоизоляции труб отопления очевидны. Утеплитель из вспененного полиэтилена выигрывает по эксплуатационным, физическим и экономическим свойствам. Он универсален, энергоэффективен, сохраняет теплозащитные свойства в течение срока службы, применяется на объектах средней и низкой ценовой категории за счет доступной стоимости.

Завод технической изоляции ТЕПЛОФЛЕКС производит трубки из вспененного полиэтилена различного диаметра и толщины, предназначенные для теплоизоляции труб отопления и ГВС. Работаем с мелким и крупным оптом. Осуществляем доставку по России.

Телефон отдела продаж: +7 (495) 220-13-72

Другие сферы применения вспененной изоляции:

Выбираем утеплитель для труб канализации, водопровода и отопления: самые эффективные варианты

На чтение: 5 минут Нет времени?

Утеплитель для труб – это материал, который гарантирует эффективную работу системы, сохранение комфортной температуры в доме и бесперебойной циркуляции содержимого магистрали. В условиях наших широт утеплять приходится все коммуникации. Выбор теплоизоляции – ответственная задача, с которой непросто справиться, учитывая широкий ассортимент. Небольшой экскурс по возможным вариантам – в этом обзоре от редакции HouseChief.

Читайте в статье

Теплоизоляция: насущная необходимость или перестраховка

Грунт промерзает практически во всех наших широтах. Если трубопровод с жидким содержимым окажется в промёрзшей земле, его, скорее всего, разорвёт. Кроме того, непосредственный контакт с холодной почвой или воздухом ведёт к значительным теплопотерям. Часть тепловой энергии будет напрасно расходоваться на обогрев окружающей среды и не доходить до пункта назначения.

В домах котельная зачастую находится вне основного помещения, и теплоносителю приходится преодолевать некоторое расстояние, прежде чем попасть в радиаторы. Маршрут магистрали может проходить по чердаку, подвалу или неотапливаемому коридору.

Система канализации также очень зависима от температуры. Даже если магистраль проложена по всем правилам, с необходимым уклоном, внутри труб образуется налёт, который при промерзании может закупорить систему и привести к разрыву трубы. Таким проблемам подвержены не только централизованные системы, но и автономные сооружения с септиком.

В трубах водопровода постоянно находится вода. Она начинает циркулировать при открытии крана, а в остальное время может превратиться в лёд в промерзающей почве.

Так что о перестраховке нет и речи. Теплоизоляция – это действительно необходимая процедура, которой не стоит пренебрегать, если вы не хотите постоянно заниматься ремонтов инженерных сетей
ФОТО: vodakanazer.ru

Требования к теплоизоляторам для трубопроводов

Чтобы утеплитель эффективно выполнял свою задачу, он должен соответствовать нескольким важным требованиям:

  • уровень теплопроводности должен быть как можно более низким для эффективного сохранения температуры содержимого магистрали в холодное и тёплое время года;
  • теплоизоляция должна быть безопасной для человека;
  • материал не должен быть пожароопасным и не должен поддерживать горение;
  • утеплитель не должен накапливать влагу, так как этот процесс снижает его способность сохранять тепло;
  • монтаж материала должен быть простым, с минимальным количеством стыков и возможностью изоляции узлов сложной конфигурации;
  • важна ремонтопригодность утеплителя и возможность его неоднократного применения;
  • материал должен быть устойчивым к внешнему воздействию, механическому, атмосферному и химическому, а также к резкому перепаду температурного режима.

Имеет ли значение стоимость материала? Как правило, хороший утеплитель не может стоить слишком дёшево, хотя эти материалы обычно не требуют больших расходов
ФОТО: aiss33.ru

Какие утеплители подходят под эти требования? Есть несколько вариантов, которые отлично подходят для утепления труб: это минераловатные материалы, теплоизоляторы из вспененных материалов и некоторые сыпучие и жидкие вещества, способные выполнять подобные задачи.

Виды утеплителей для труб и их особенности

Рассмотрим основные варианты теплоизоляторов, которые наиболее эффективны для утепления систем канализации, отопления и водопровода.

Минераловатные материалы

Стекловолокно или каменная вата отлично сохраняют тепло. Если сравнивать эти два вида утеплителя, то каменная вата выигрывает по изолирующим свойствам. Она выдерживает температуру до 700ºС и отлично держит форму даже при механическом воздействии. Этот утеплитель отличается устойчивостью к агрессивной химии и стоит сравнительно недорого.

Но есть у него и свои неприятные особенности. Главная из них – способность впитывать влагу. С этим процессом каменная вата постепенно теряет свои теплоизолирующие свойства. Поэтому, если вы остановите свой выбор на этом материале, следует продумать ещё один наружный слой гидроизоляции для защиты от воды.

Продаётся этот утеплитель в плитах, цилиндрах и рулонах. Материал уже может быть защищён с одной стороны фольгой
ФОТО: ecotherm.bg

Утеплитель пенополистирол

Пенопластовый утеплитель содержит более 50% воздуха в своей массе, что делает его одним из лучших. Его единственный недостаток – хрупкость, которая не позволяет сгибать его по форме трубы. Но производители решили эту проблему выпуском пенопластовой скорлупы, которая имеет форму полуцилиндра и может одеваться на трубу, как рубашка.

Читайте также:
Машина для откачки канализации: как называется и как работает?

Соединение полуцилиндров осуществляется пазогребневым способом, что исключает образование мостиков холода
ФОТО: build-experts.ru

Такая оболочка выдерживает перепады температуры от -110ºС до +80ºС градусов. Если ваши трубы отопления нагреваются до большей температуры, то между ними и пенопластом следует проложить пробковую мембрану.

Такой утеплитель не поддерживает горение и может быть использован не один раз.

Более совершенным вариантом скорлупы является пеноплекс, который при меньшей толщине имеет лучшие теплоизолирующие свойства. Пеноплекс более эластичен, так что может при необходимости немного сгибаться.

Жидкий пеноизол

Этот материал наносится методом распыления и используется чаще для изоляции труб в промышленных помещениях. После такой обработки труба полностью скрывается под слоем изолятора, без образования мостиков холода. Таким способом удобно изолировать трубы со сложной конфигурацией. Стоят услуги по напылению недёшево. В условиях частного домовладения аналогом такому утеплению может стать обычная монтажная пена.

Так можно утеплить небольшой отрезок трубы
ФОТО: prorab.help

Вспененный полиэтилен

Полиэтилен – довольно прочный материал, хорошо выдерживающий механические нагрузки. Этот вид утеплителя не боится влаги и защищает металлические трубы от коррозионного поражения. Температурный диапазон эксплуатации – от -60ºС до +90ºС. Вспененный полиэтилен долго сопротивляется возгоранию, но если и горит, то не выделяет токсины.

Монтировать такой утеплитель легко, он эластичен и подходит для труб любого диаметра
ФОТО: polifasplus.ru

Цена вспененного полиэтилена на порядок ниже, к примеру, полиуретана. Теплоизоляция для труб из этого материала выпускается в форме полых цилиндров длиной до 200 см и толщиной стенки до 20 мм.

Чтобы надеть такой цилиндр на трубу, его разрезают вдоль, а затем место разреза скрепляется скотчем. Рулонным материалом просто оборачивают трубы.

Фольгированный пенофол

Фольгированные утеплители – современный и популярный вид теплоизоляции, простой в монтаже и эффективной в эксплуатации. Фольгированным пенофолом можно, в том числе утеплять и трубы. Его выпускают в рулонах и полых цилиндрах.

Монтаж пенофола аналогичен вспененному полиэтилену
ФОТО: vystroim.com

Энергофлекс

Этот вид утеплителя отличается гибкостью. По сути, энергофлекс – это разновидность вспененного полиэтилена высокого давления. Этот материал можно использовать на открытом воздухе. Он не боится воды и может выдерживать температуру от -60ºС до +90ºС.

ПВД устойчив к агрессивным химическим веществам и может эксплуатироваться не менее 25 лет
ФОТО: 7.allegroimg.com

Выпускается в рулонах и полых цилиндрах.

Недостатком Энергофлекса считается его восприимчивость к прямому ультрафиолету.

Теплоизоляционные красители

Это сравнительно новый вид теплоизоляции, который наносится обычной кистью или валиком. Толщина получаемого слоя минимальна, а эффект теплоизоляции достаточно высок. Цена таких красок «кусается», а секрет их изготовления бдительно хранится производителями. Известно только то, что теплоизолирующий эффект присутствует благодаря наличию микросфер с воздухом в составе краски. Такое покрытие способно заменить пятисантиметровый слой минеральной ваты.

Параллельно краситель защищает трубы от коррозии и не даёт образовываться на их поверхности конденсату
ФОТО: gidpokraske.ru

Сыпучие утеплители

Кроме перечисленных материалов, трубы в грунте традиционно утепляют керамзитом. Слой этого материала способен качественно и надолго сохранять тепло. Чтобы утеплитель не смешивался с грунтом, его помещают вместе с трубами в короб из доски или в бетонные оболочки.

Теплоизоляция для труб: как сделать выбор

Выбор утеплителя зависит от трёх основных факторов: места расположения трубопровода, особенностей монтажа и стоимости. В принципе, любой из перечисленных выше утеплителей несложно установить своими руками.

Для сохранения труб от перегрева снаружи используют фольгированные утеплители. По стоимости материала самой дорогой будет минеральная вата, а самым дешёвым – вспененный полиэтилен.

В случае, когда обернуть трубы теплоизолятором не получается из-за их сложной структуры или расположения – логично использовать термокраску.

Для отопительной системы

Для системы отопления следует использовать теплоизоляционные материалы, которые можно эксплуатировать в контакте с высокотемпературными объектами. К таким можно отнести минеральную вату, пеноплекс и пенополиуретан.

Тёплые трубы отопления привлекают домашних паразитов, грызунов. Они могут повредить теплоизоляцию, так что следует заранее продумать её защиту
ФОТО: trubarus.ru

Для водопровода

Для утепления водопровода важны два условия: максимальное сохранение тепла и защита от коррозии. Больше всего для этого подходит пенополиуретан, который наносится в жидком состоянии, и теплоизолирующая краска. Оба этих варианта исключают образование конденсата и предохраняют трубы от ржавчины.

Для канализации

Канализационные трубы с недостаточным уклоном или проходящие менее чем в полуметре от поверхности грунта обязательно нужно утеплять. Для этого потребуются материалы, не впитывающие влагу и устойчивые к механическому воздействию.

Отлично подойдёт для таких целей вспененный полиэтилен и пеноизол
ФОТО: tehnopena.ru

Как самостоятельно установить утеплитель на трубы

Монтаж теплоизоляции на трубы – довольно простая задача, решить которую под силу даже новичку. Вот небольшой видеоматериал на эту тему, который поможет быстро разобраться в процессе:

Виды изоляции труб отопления и правила их использования

В статье речь пойдет о том, как изоляция труб отопления поможет минимизировать потери тепловой энергии и решить прочие проблемы. Обычно такое утепление не только сохраняет температурный режим системы в пределах одного диапазона, но и устраняет такую проблему, как конденсация влаги на поверхности труб, замерзание воды при застое, коррозионное воздействие на металлические элементы системы и т.д.

Читайте также:
Как своими руками сделать мебель из ламината?

Правила выбора теплоизоляционного материала

Особенности умеренного климата таковы, что изолировать отопительную систему крайне важно, вне зависимости от того, речь идет о магистральной централизованной подаче теплоносителя или об отоплении в частном доме.

Следующие факторы являются ключевыми при выборе теплоизоляционного материала:

  • диаметр монтируемого трубопровода;
  • существующие эксплуатационные условия для системы;
  • предельная температура нагревания используемого теплоносителя.

Диаметр влияет на вид, в котором будет представлен утеплитель:

  • жесткий цилиндр определенной формы или полуцилиндр – идеален для трубопроводов малого диаметра. В такой конструкции делают специальные пазы, упрощающие процесс ее закрепления на отопительной трубе;
  • мягкий теплоизоляционный материал в рулонах.

Можно также встретить сегментированный утеплитель, представленный минеральной ватой или полимерными пластифицированными материалами.

Жесткий утеплитель ценен следующими своими качествами:

  • повышенная термическая устойчивость;
  • низкий уровень поглощения влаги;
  • сохранение своей формы под механической нагрузкой;
  • высокий уровень защищенности от механических повреждений.

Однако, чтобы понять преимущества того или иного утеплителя, необходимо рассмотреть его характеристики более подробно.

Минеральная вата – высокое качество и безопасность

Минеральная вата очень ценится, как один из компонентов многих теплоизоляционных материалов, поскольку отличается рядом положительных качеств:

  • высокая термическая устойчивость (до 650 градусов по Цельсию);
  • при нагревании не снижается эффективность утепления и физические характеристики;
  • наблюдается химическая инертность к растворяющим, щелочным, кислотным и масляным веществам;
  • при правильно обработке специальными пропитками можно наделить материал водоотталкивающим эффектом;
  • эксплуатация безопасна для человека, поскольку отсутствуют токсичные выделения.

При помощи минеральной ваты легко осуществляется изоляция трубопровода теплоснабжения, как в жилых постройках, так и в зданиях промышленных и социальных отраслей. Нередко применяется теплоизолятор для закрытия дымоходов, которые постоянно подвергаются высоким температурам и частому их колебанию.

Основные виды минеральной ваты:

  • каменная – на основе базальтовых горных пород;
  • стеклянная – на основе битого стекла или штапельного волокна, изготавливаемого из песка кварца. Несколько реже применяется из-за более низкой термической устойчивости;
  • шлаковая – на основе плавленого шлака, образуемого в доменных печах.

Стекловата, как отдельная разновидность материала представлена рулонами с толщиной слоя 3-4 микрометра. Длина может достигать 1,55-2 метра. У материала пониженная плотность и эксплуатировать его можно лишь в сочетании с системами, прогреваемыми не более 180 градусов по Цельсию. Читайте также: “Применение труб ППМ, особенности производства, правила установки”.

Основные положительные качества данной разновидности:

  • вибрационная устойчивость;
  • инертность к биологическому и химическому воздействию;
  • очень долгий эксплуатационный период.

Пенополиуретан – яркий представитель надежных полимеров

Из пенополиуретана создается специальная конструкция повышенной жесткости, в которой выделяются ребра и стенки. Отливка материала происходит по технологии «труба в трубе» на специализированных производственных мощностях. Также такой материал для изоляции труб отопления имеет название – скорлупа.

Помимо высокой прочности и теплоизоляции он обладает следующими положительными качествами:

  • практически не имеет запаха (нейтрален в этом плане);
  • не выделяет токсичных веществ;
  • устойчив к процессам гниения;
  • совершенно безопасен для человеческого организма;
  • обладает повышенной прочностью;
  • практически не проводит электрический ток;
  • инертен к разнообразным химическим веществам;
  • устойчив к самым разным погодным условиям и негативным природным факторам воздействия, что позволяет применять его на открытом воздухе. Читайте также: “Характеристики утеплителя для труб Энергофлекс и способ его монтажа”.

Единственным недостатком можно назвать повышенную стоимость такого утеплителя.

Вспененный полиэтилен – оптимальное качество по доступной цене

Вспененный полиэтилен – это уникальный изоляционный материал для труб отопления, экологическая чистота которого подтверждена экспертной оценкой. Также он устойчив к воздействию влаги и постоянным температурным перепадам, неизбежным при эксплуатации системы отопления. В настоящее время на данный материал сформировался достаточный спрос, чтобы считать его одним из самых популярных.

После производства он выглядит как трубка с продольным надрезом и применяется, как в отопительных системах, так и на трубы горячего и холодного водоснабжения. Не теряет своих качеств при прокладке труб в агрессивных средах: известковые стены, бетонная стяжка и т.д.

Прочие варианты теплоизоляционных материалов

Список утеплителей гораздо шире, а потому стоит выделить и другие материалы:

  • Пенопласт – еще один полимер с низкой степенью поглощения влаги и теплопроводности. Обладает длительным эксплуатационным сроком – от 50 лет, хорошей звукоизоляцией, термической устойчивостью и огнеупорностью. Чаще всего применяется в промышленной сфере.
  • Пенополистирол – материал, представленный двумя половинками трубки. Между собой они стыкуются за счет крепления по системе «шип в паз». В таком утеплителе не образуются «мостики холода».
  • Пеноизол – во многом схож с пенопластом, но отличается своей жидкой формой производства. Наносится на трубе по принципу мастики, что позволяет создать абсолютно герметичный однородный теплоизоляционный слой. Читайте также: “Какая теплоизоляция для труб отопления наиболее эффективна”.
  • Пеностекло – безопасный утеплитель с ячейками в структуре. Основой для производства является битое стекло. При использовании данного материала отсутствует усадка, он очень прочен и обладает длительным эксплуатационным сроком. Он не горит, не вступает в активное взаимодействие с химическими веществами в агрессивных средах, а также отталкивает живые организмы, что очень ценится при прокладке отопительной системы в подвальных помещениях или на нижних уровнях зданий. Читайте также: “Варианты изоляции трубопроводов отопления – обзор материалов”.
Читайте также:
Линолеум в доме — как выбрать покрытие для кухни, спальни, прихожей и детской

Стоит отметить, что такие изоляционные материалы для труб как пеностекло очень просты в эксплуатации, а потому даже человек без опыта в утеплении может их использовать.

Как краска может помочь в теплоизоляции

Оказывается, помимо перечисленных выше материалов существует специальная краска для теплоизоляции, что была разработана отечественными производителями.

В ее состав входят следующие компоненты:

  1. Пеностекло.
  2. Керамические микросферы.
  3. Перлит и прочие вещества, обладающие базовыми свойствами для утеплителей.

Если покрыть отопительный контур 2-миллиметровым слоем такой краски, то можно получить утепление равнозначное тому, что образуется за счет наложения нескольких слоев перечисленных ранее материалов. При этом краска абсолютно безопасна для человеческого организма и окружающей среды, не имеет какого-либо запаха, что позволяет не проветривать помещение после проведения работ.

Металлические поверхности после ее нанесения становятся защищенными от коррозирующего воздействия и более устойчивыми к высоким температурам. Краска значительно удобнее, поскольку ее можно нанести даже в самых труднодоступных местах.

Собственноручное утепление отопительных труб

Любой из перечисленных материалов монтируется следующим образом:

  1. Вначале трубы проклеиваются фольгированным скотчем. Накладывать его нужно по спирали.
  2. Затем вокруг участка трубопровода оборачивается утеплитель. Швы между кусками должны практически отсутствовать за счет максимально прочной фиксации. Только в этом случае в материале не образуются «мостики холода».
  3. Внешняя фиксация материала производится при помощи промышленного скотча. Без выполнения этого действия возникает риск попадания влаги в щели между кусками утеплителя.

Итог

Все перечисленные материалы изоляции трубопровода теплоснабжения имеют свои преимущества и недостатки, а потому подбирать их нужно с учетом конкретной ситуации и особенностей здания, где будут производиться работы.

Если следовать предложенным инструкциям, то система отопления будет эффективна и надежно защищена. Лучше всего доверить работам специалистам, которые возьмут на себя ответственность за все этапы – от закупки необходимых материалов до их монтажа и введения отопительной системы в эксплуатацию.

Нормы и порядок измерения сопротивления изоляции кабеля

Надежная эксплуатация электрических проводников возможна исключительно при должном контроле. Одним из важнейших показателей их состояния является изоляция. Рассмотрим, как и когда необходимо проверять сопротивление.

Необходимость проведения замеров

Изоляционный слой электрических проводников предназначен для обеспечения:

  • защиты от воздействия внешних факторов;
  • защиты обслуживающего персонала;
  • надежности работы электрооборудования.

Назначения и типы изоляции электрооборудования

На состояние изоляции влияют следующие факторы:

  • окружающая среда (повышенная температура, влажность и т. д.);
  • превышение допустимых токовых нагрузок;
  • воздействие механических сил;
  • естественный износ эксплуатационного ресурса.

При повреждении изоляционного покрытия могут фиксироваться утечки тока, короткие замыкания и несчастные случаи с людьми. Выполнение периодического контроля качества изоляции позволяет предотвратить указанные проблемы. Контроль осуществляется посредством замера сопротивления специальными техническими средствами.

Подготовка к измерению сопротивления изоляции кабеля

Замер сопротивления изоляции должен выполняться в соответствии с техническими и организационными мероприятиями. Прозвонить проводник можно только после отключения кабельной линии со всех сторон. В противном случае будет выполнена проверка сопротивления совместно с подключенным электрическим оборудованием.

Измерения должны осуществляться с учетом температуры окружающего воздуха. Она влияет на минимально допустимые показатели изоляционного слоя.

Перед проверкой следует отключить кабельную линию от источника тока и нагрузки

Перед проведением замера следует убедиться в отсутствии напряжения, используя указатель на соответствующий уровень напряжения. Затем закоротить проводник или установить заземление. Это требуется для снятия остаточного или наведенного потенциала. Далее вывешиваются плакаты:

  • запрещающие — «Не включать, работают люди»;
  • указательные — «Заземлено».

Приборы и средства измерения

Измерение сопротивления изоляции токопроводящих жил проводится мегаомметрами или специальными установками. Второй вариант, как правило, применяется для проводов напряжением более 1 кВ. Испытания проводятся согласно установленным требованиям ПТЭ. Суть метода заключается в подаче напряжения от постоянного или переменного источника питания с постепенным увеличением его значения до максимально допустимого для конкретного типа кабеля. При фиксации пробоя изоляционного покрытия по итогам испытаний эксплуатация кабельной линии запрещается.

Использование мегаомметра позволяет зафиксировать снижение качества изоляции без ее разрушения. Существуют различные модификации данных устройств, которые можно разделить на две категории:

  • электромеханические;
  • электронные.

Цифровой прибор для измерения сопротивления изоляции

Измерительные приборы выпускаются со следующими номинальными уровнями напряжений: 100, 500, 1000 и 2500 В.

Принцип действия мегаомметра основан на подаче напряжения от постоянного источника питания и фиксации величины образуемого тока. После сопоставления указанных величин, в соответствии с законом Ома, на шкалу или монитор измерительного устройства выдается величина сопротивления.

Главным конструктивным отличием электромеханического и электронного мегаомметра является источник постоянного тока. Для первых предусматривается встроенный ручной генератор, а для вторых аккумуляторная батарея.

Мегаомметр ЭС0202/1Г с ручным генератором

Нормы сопротивления изоляции для различных кабелей

Встречаются следующие виды электрических проводников:

  1. Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
  2. Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
  3. Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.
Читайте также:
Мозаика из стекла своими руками для кухни и в ванной с фото и видео

Нормы сопротивления изоляции для различных видов электрооборудования

Конкретные показатели сопротивлений для определенных марок кабеля можно узнать в следующей технической литературе:

  • ПУЭ — таблица 1.8.34;
  • ПТЭ — таблица 37.

Как измеряется сопротивление

Порядок проверки состояния изоляционного слоя зависит от типа проверяемого электрического проводника. На начальной стадии выполняются идентичные действия:

  1. Проверяется работоспособность мегаомметра. Понадобится соединить два зажима устройства, и сделать замер. Прибор должен показать ноль. Затем концы проводов измерительного устройства разводятся в сторону, и выполняется замер. Если в результате получится бесконечность, то прибор исправен.
  2. Измерения ведутся со стороны кабельной линии, где установлено переносное заземление. В процессе работы необходимо использовать диэлектрические перчатки.
  3. На другом конце кабельной линии следует развести жилы проводника в стороны. Для обеспечения безопасности людей от поражения электрическим током во время проведения испытания, следует поставить человека для предупреждения об опасности.

На завершающем этапе необходимо сравнить полученные результаты с допустимыми значениями, и составить протокол. В нем отражается последовательность выполненных действий, используемые измерительные средства, температурный режим и заключение о состоянии электрического проводника.

Методика измерения сопротивления изоляции высоковольтных силовых кабелей

Прозвонить высоковольтные проводники необходимо с использованием мегаомметра на 2500 В. Последовательность действий следующая:

  1. Один конец измерительного устройства цепляется к контуру заземления, а второй к фазе «А» кабеля.
  2. Снимается заземляющий проводник с фазы «А», и делается замер на протяжении 60 секунд.
  3. Далее понадобится установить заземление на фазу «А», и снять зажим мегаомметра.
  4. В дальнейшем аналогичные операции проводятся для фаз «В» и «С».

Схема измерения изоляции высоковольтного кабеля

При значительной длине кабельной линии испытания производятся с учетом коэффициента абсорбции. Потребуется зафиксировать показания прибора после 15 и 60 секунд измерений. Отношение значения сопротивления после 60 секунд к показанию после 15 секунд должно быть не менее 1.3. При меньшем значении делается вывод об увлажнении изоляционного слоя. Для устранения неисправности потребуется выполнить сушку проводника.

Методика измерения сопротивления изоляции низковольтных силовых кабелей

Для проведения работ потребуется использовать мегаомметр на 1000 В. После выполнения первоначальных пунктов, необходимо приступить к выполнению следующих мероприятий:

  1. Делается измерение сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».
  2. Поочередно проверяется изоляция фаз кабеля относительно нулевого провода (N).
  3. Далее выполняется поочередные измерения между каждой фазой и заземляющим контуром (PE) при проверке пятижильного проводника.
  4. Отсоединяется нулевой провод от нулевой шинки и осуществляется измерение между N и PE.

Измерение сопротивления изоляции между жилами кабеля

После каждого испытания следует снимать потенциал посредством установки заземления.

Методика измерения сопротивления изоляции контрольных кабелей

Процесс проверки состояния изоляционного слоя указанной категории токопроводящих жил идентичен предыдущему пункту, за одним исключением. Жилы кабеля, которые не участвуют в проверке, необходимо закоротить и подсоединить к заземляющему контуру.

Контроль над изоляцией

Периодичность проведения контрольных измерений состояния изоляционного покрытия устанавливается нормативными документами:

  • раз в шесть месяцев — передвижные и переносные токоприемники;
  • ежегодно — проводники и приемники наружной установки, а также при их прокладке в условиях повышенной опасности;
  • каждые три года — все остальное электрооборудование.

Периодичность замеров для различных объектов

На промышленных и энергетических предприятиях установлена своя периодичность проверки, согласно утвержденным инструкциям.

Требования безопасности

Согласно действующим межотраслевым правилам по охране труда при эксплуатации ЭУ, для проверки состояния изоляционного слоя мегомметром должны соблюдаться следующие меры безопасности:

  1. Замеры должны осуществляться квалифицированными специалистами. К проверке изоляционного слоя кабельной линии напряжением менее 1000 Вольт допускаются лица с III, а при напряжении более 1000 В с IV группой по электробезопасности.
  2. Пользоваться прибором необходимо в диэлектрических перчатках.
  3. Установка зажимов мегаомметра должна производиться только на заземленный электрический проводник.
  4. По завершении измерения требуется снять потенциал с проводов, посредством установки заземления.

Измерение проводится в диэлектрических перчатках

Работы с измерительным устройством выполняются по распоряжению, наряду-допуску или в порядке текущей эксплуатации, в зависимости от уровня напряжения. Проверка изоляционного покрытия установками с подачей высокого напряжения выполняется лицами с правом проведения высоковольтных испытаний.

Периодичность замеров сопротивления изоляции электропроводки

Состояние изоляционной оболочки, проложенной на открытом воздухе электропроводки, должно проверяться каждые двенадцать месяцев. При других вариантах прокладки — раз в тридцать шесть месяцев.

Проверка изоляции электропроводки в частном доме

Своевременно выявленное ухудшение качества изоляционного покрытия электрических проводников позволит предотвратить аварию или несчастный случай. Проведение требуемых работ должно производиться с соблюдением всех мер безопасности.

Измерение сопротивления изоляции. Общая методика

2021-03-27 Статьи 2 комментария

В соответствии с требованиями нормативно-технической документации, все электроустановки, реконструируемые, либо вновь вводимые в эксплуатацию, должны быть подвергнуты приемо-сдаточным испытаниям согласно ГОСТ Р 50571.16-2019. То есть, испытания должны проводиться после окончания монтажа установки, перед сдачей в эксплуатацию, или после того, как были внесены изменения (дополнения) в уже существующую.

Читайте также:
Как и чем удалить пятна с полированной мебели

По результатам проведения проверки должен составляться технический отчет, в двух экземплярах, куда заносятся все протоколы испытаний. В случае выявления каких-либо дефектов, электротехнической лабораторией выдается перечень замечаний для принятия мер по их устранению.

В состав протокола испытаний должны входить следующие данные:

  • Дата заявки на проведение испытания
  • Полное наименование электроустановки и ее составных частей
  • Адрес и название электролаборатории, проводившей испытания
  • Дата и место проведения испытательных мероприятий
  • Место проведения
  • Цели и программа проверки испытаний
  • Условия проведения измерений
  • Результаты проверки

При проведении приемо-сдаточных испытаний, важная роль отводится проверке сопротивления изоляции кабелей, электрооборудования, вторичных цепей, о методах измерений которой и пойдет речь дальше. Цель данной проверки заключается в выявлении и устранении возможных нарушений соответствия сопротивления установленным нормам.

Помимо этого, в составе комплексных испытаний, проводятся визуальный осмотр, измерение токов короткого замыкания и полного сопротивления петли «фаза-нуль», измерение полного сопротивления заземляющего устройства, проверка соединений между заземлителями и заземленными элементами электрооборудования (металлосвязи) с измерением переходного сопротивления контактного соединения, прогрузка автоматических выключателей напряжением до 1000 В, измерение параметров срабатывания устройств защитного отключения (УЗО).

В дальнейшем, после сдачи объекта, периодичность проведения испытаний, согласно ПТЭЭП, должна быть один раз в год для особо опасных объектов и наружных установок, в остальных случаях один раз в три года.

Методика проверки сопротивления изоляции

Сама методика проверки сопротивления изоляции основывается на том, что к испытуемому объекту подается повышенное испытательное напряжение, в зависимости от объекта измерения, 250 В, 500 В, 1000 В или 2500 В.

Сопротивление изоляции определяется на основании измеренного тока утечки и приложенного выпрямленного напряжения.

Ток утечки — это ток, протекающий с токоведущих частей, находящихся под напряжением, установки в землю при отсутствии повреждения изоляции.

Если изоляции соответствует нормам, то ток утечки не будет превышать допустимые пределы, соответственно и сопротивление будет очень большое. В случае ухудшения характеристик изоляции, обычно в следствии износа, ток утечки будет увеличиваться. При этом в обычном режиме работы эти значения достаточно малы, а вот при воздействии повышенного напряжения ток утечки увеличиваясь, становится при этом током КЗ, а сопротивление изоляции значительно уменьшается.

Помимо вышесказанного, на состояние изоляции влияют еще два параметра — коэффициент абсорбции и коэффициент поляризации.

Коэффициент абсорбции (DAR)

Коэффициент абсорбции определяет степень влажности изоляционного материала. Представляет собой отношение сопротивления, измеренного мегаомметром через 60 сек. с момента приложения напряжения, к отношению сопротивления измеренного через 15 сек. после начала приложения испытательного напряжения от мегаомметра: Кабс = R60/R15.

Если изоляция сухая, то коэффициент абсорбции будет значительно превышать единицу, в противном случае коэффициент абсорбции близок к единице.

Коэффициент поляризации (PI)

Коэффициент поляризации — это отношение сопротивлений, измеренных мегомметром через 600 сек. с момента приложения напряжения и 60 сек. после начала приложения испытательного напряжения от мегомметра: Кпол = R600/R60.

Данный коэффициент на основе изменения структуры диэлектрика, способности заряженных частиц перемещаться в диэлектрике под воздействием электрического поля, определяет степень старения изоляции, можно сказать прогнозирует остаточный ресурс.

Измерение данного коэффициента не является обязательным при проведении проверки измерения сопротивления изоляции и проводится только в составе комплексных испытаний.

Допустимые значения сопротивления изоляции

Ниже в таблице приведены минимально допустимые значения сопротивления изоляции для электроустановок, аппаратов, вторичных цепей и электропроводок напряжением до 1000 В.

Данные значения приводятся в соответствии с ПУЭ (Правила устройства электроустановок) гл.1.8 и ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) приложение 3; 3.1

Наименование элемента Напряжение мегаомметра, В Сопротивление изоляции, МОм Примечание
Электроизделия и аппараты на номинальное напряжение, В: Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы
до 50
свыше 50 до 100
свыше 100 до 380
свыше 380
100
250
500 — 1000
1000 — 2500
Распределительные устройства, щиты и токопроводы 1000 — 2500 не менее 1 Измерения производятся на каждой секции распределительного устройства
Электропроводки, в том числе осветительные сети 1000 не менее 0,5 При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. 1000 не менее 1 Измерения производятся со всеми присоединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)
Краны и лифты 1000 не менее 0,5 Производится не реже 1 раза в год
Стационарные электроплиты 1000 не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год
Шинки постоянного тока и шинки напряжения на щитах управления 500 — 1000 не менее 10 Производится при отсоединенных цепях
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500 — 1000 В, присоединенных к главным цепям 500 — 1000 не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 Мом
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В:
до 60
свыше 60
100
500
не менее 0,5
не менее 0,5
Читайте также:
Какие обои выбрать для интерьера в английском стиле

Условия при проведении измерений

Измерения проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допустимое значение электрического сопротивления изоляции испытуемого изделия.

Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет.

Требования безопасности

  1. До начала проведения измерений убедитесь в отсутствии напряжения на измеряемом объекте.
  2. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
  3. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.
  4. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).
  5. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.

Подготовка к выполнению измерений

При подготовке к измерениям необходимо выполнить ряд технических мероприятий в соответствии с Межотраслевыми правилами по охране труда при эксплуатации электроустановок ПОТ Р М-016-2001, а также требованиями ГОСТ 12.3.019-80 (Система стандартов безопасности труда (ССБТ). Испытания и измерения электрические. Общие требования безопасности). При проведении испытаний руководствоваться требованиями Инструкции по охране труда при измерении сопротивления изоляции.

  1. Измерения должны проводиться мегаомметрами различного типа и на различное напряжение, в зависимости от требований испытательного напряжения.
  2. Проверить срок действия госповерки на мегаомметр.
  3. При выполнении периодических профилактических работ в электроустановках, а так же при выполнении работ на реконструируемых объектах в электроустановках, подготовку рабочего места выполняет персонал предприятия, где выполняется работа.
  4. Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего.
  5. Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением.
  6. Проверить исправность мегаомметра.

Мегаомметры

В качестве измерительных приборов применяются мегаомметры стрелочные аналогового типа, например М4100, ЭСО202 либо цифровые приборы, в последнее время получившие большое распространение.

Но в независимости от типа, все мегаомметры должны иметь действующие документы об их поверке или аттестации.

Выполнение измерений

Измерения сопротивления изоляции проводятся методом прямого измерения сопротивления между каждой токопроводящей жилой, одной токопроводящей жилой и остальными жилами, соединенными между собой и относительно земли (заземляющей шины).

Для кабелей с металлической оболочкой, экраном или броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и оболочкой, экраном, или броней.

Для электроустановок измерения проводят между всеми изолированными частями.

Для того, чтобы исключить влияние поверхностных токов при измерении сопротивления, необходимо использовать трёхпроводный метод измерения.

Сопротивление изоляции, измеренное при испытательном напряжении считается удовлетворительным, если оно соответствует минимально допустимым значениям, которые приведены в таблице. Если результаты замеров показали значения, отличные от данных допустимых значений, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

Значение показаний мегаомметра фиксируются по истечении 1 мин. с момента приложения измерительного напряжения, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

Для повторного замера все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

При проведении замеров, должны учитываться погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т.п

Пример протокола измерения сопротивления изоляции

Выполняем замер сопротивления изоляции электропроводки своими руками

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

  • Работа с мегаомметром
    • Что такое мегаомметр?
    • Кто и когда имеет право производить замеры мегаомметром
    • Как работать с мегаомметром?
  • Несколько слов о мультиметре
  • Вывод
Читайте также:
Классификация противопожарных дверей

Работа с мегаомметром

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

  • На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

  • По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:

  • Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.

  • Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
    Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.

Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.

  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

  • Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Несколько слов о мультиметре

Большинство мультиметров имеют функцию замера сопротивления. Но измеряют они не сопротивление изоляции, а сопротивление электрической цепи.

Поэтому для проведения периодических проверок сопротивления изоляции он не предназначен. Мультиметр позволит вам своими руками отыскать место повреждения провода, найти плохой контакт, проверить целостность заземляющего проводника, а также еще целый ряд необходимых задач. Но замерить сопротивление изоляции он не способен.

Вывод

Надеемся, наша инструкция поможет вам определиться со сроками и методами проведения проверки сопротивления изоляции. Ведь многочисленные видео в сети интернет зачастую дают информацию несоответствующую действительности о возможности использования для этих целей мультиметра.

Недаром в большинстве случаев такими измерениями занимаются специальные высоковольтные лаборатории, которые имеют все необходимое оборудование, специалистов и сертификацию, согласно действующего законодательства.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: